Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 065201    DOI: 10.1088/1674-1056/adc2de
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

General relaxation model for a homogeneous plasma with spherically symmetric velocity space

Yanpeng Wang(王彦鹏)1,†‡, Shichao Wu(吴士超)2,3,†§, and Peifeng Fan(范培峰)4
1 School of Nuclear Sciences and Technology, University of Science and Technology of China, Hefei 230026, China;
2 School of Science, Jiangsu Ocean University, Lianyungang 222005, China;
3 Jiangsu Institute of Marine Resources Development, Lianyungang 222005, China;
4 School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
Abstract  A kinetic moment-closed model (KMCM), derived from the Vlasov-Fokker-Planck (VFP) equation with spherically symmetric velocity space, is introduced as a general relaxation model for homogeneous plasmas. The closed form of this model is presented by introducing a set of new functions called $R$ function and $R$ integration. This nonlinear model, based on the finitely distinguishable independent features (FDIF) hypothesis, enables the capture of the nature of the equilibrium state and non-equilibrium state. From this relaxation model, a general temperature relaxation model is derived when the velocity space exhibits spherical symmetry, and the general characteristic frequency of temperature relaxation is presented.
Keywords:  finitely distinguishable independent features hypothesis      kinetic moment-closed model      King mixture model      spherical symmetry      nonlinearity  
Received:  20 January 2025      Revised:  11 March 2025      Accepted manuscript online:  20 March 2025
PACS:  52.65.Ff (Fokker-Planck and Vlasov equation)  
  52.25.Fi (Transport properties)  
  52.25.Dg (Plasma kinetic equations)  
  52.35.Sb (Solitons; BGK modes)  
Fund: This work is supported by the Shuangchuang Ph.D Award (from World Prestigious Universities) (Grant No. JSSCBS20211303), Lianyungang Postdoctoral Science Foundation (Grant No. LYG20220014), and the National Natural Science Foundation of China (Grant No.120051410).
Corresponding Authors:  Yanpeng Wang, Shichao Wu     E-mail:  tangwang@mail.ustc.edu.cn;wusc@jou.edu.cn

Cite this article: 

Yanpeng Wang(王彦鹏), Shichao Wu(吴士超), and Peifeng Fan(范培峰) General relaxation model for a homogeneous plasma with spherically symmetric velocity space 2025 Chin. Phys. B 34 065201

[1] Rosenbluth M N, MacDonald W M and Judd D L 1957 Phys. Rev. 107 1
[2] Vlasov A A 1968 Soviet Physics Uspekhi 10 721
[3] Wang Y, Xiao J, Rao X, Zhang P, Adil Y and Zhuang G 2025 Chin. Phys. B 34 015202
[4] Boltzmann L 1966 Irreversible Processes I 88
[5] Mintzer D 1965 Phys. Fluids 8 1076
[6] Wang Y 2025 arXiv:2501.08634 [physics.plasm-ph]
[7] Schunk R W 1977 Reviews of Geophysics 15 429
[8] Thomas A G, Tzoufras M, Robinson A P, Kingham R J, Ridgers C P, Sherlock M and Bell A R 2012 Journal of Computational Physics 231 1051
[9] Wang Y, Xiao J, Zheng Y, Zou Z, Zhang P and Zhuang G 2025 arXiv:2408.01616 [math.NA]
[10] Grad H 1949 Communications on Pure and Applied Mathematics 2 331
[11] Chapman S 1916 Proc. Roy. Soc. Lond. Ser. A 93 1
[12] Chapman S and Cowling T G 1953 The Mathematical Theory of Non- Uniform Gases (Cambridge University Press)
[13] Burnett D 1935 Proceedings of the London Mathematical Society s2-39 385
[14] Freidberg J P 2014 Ideal MHD vol 9781107006 (Cambridge University Press)
[15] Wang Y 2024 arXiv:2409.12573 [physics.plasm-ph]
[16] Min K and Liu K 2015 Journal of Geophysical Research: Space Physics 120 2739
[17] Shkarofsky I P 1963 Canadian Journal of Physics 41 1753
[18] Shkarofsky I P, Johnston T W, Bachynski M P and Hirshfield J L 1967 American Journal of Physics 35 551
[19] Huba J D 2011 NRL Plasma Formulary (NRL)
[20] Johnston T W 1960 Phys. Rev. 120 1103
[21] Bell A R, Robinson A P, Sherlock M, Kingham R J and Rozmus W 2006 Plasma Physics and Controlled Fusion 48
[22] Arfken G and Pan Y K 1971 American Journal of Physics 39 461
[23] Tzoufras M, Bell A R, Norreys P A and Tsung F S 2011 Journal of Computational Physics 230 6475
[24] Braginskii S 1965 Reviews of Plasma Physics 1 205
[25] Wiener N 1932 The Annals of Mathematics 33 1
[26] Korevaar J 2004 Tauberian Theory Vol. 329 (Berlin Heidelberg: Springer)
[27] Braginskii S I 1958 J. Exptl. Theoret. Phys. (U.S.S.R.) 6 459
[28] Rackauckas C and Nie Q 2017 Journal of Open Research Software 5 15
[29] Fong D C L and Saunders M 2011 SIAM Journal on Scientific Computing 33 2950
[1] Surface solitons in Kerr-type nonlinear media with chirped lattices
Xiaoyang Wang(王笑阳), Huilian Wei(魏慧莲), Xuefei Zhang(张雪菲), and Tianfu Xu(徐天赋). Chin. Phys. B, 2025, 34(6): 060302.
[2] Correlated Rydberg electromagnetically induced transparencys
Lei Huang(黄磊), Peng-Fei Wang(王鹏斐), Han-Xiao Zhang(张焓笑), Yu Zhu(朱瑜), Hong Yang(杨红), and Dong Yan(严冬). Chin. Phys. B, 2025, 34(6): 064201.
[3] Enhancing entanglement and steering in a hybrid atom-optomechanical system via Duffing nonlinearity
Ling-Hui Dong(董凌晖), Xiao-Jie Wu(武晓捷), Cheng-Hua Bai(白成华), and Shao-Xiong Wu(武少雄). Chin. Phys. B, 2025, 34(2): 020304.
[4] Relaxation model for a homogeneous plasmas with spherically symmetric velocity space
Yanpeng Wang(王彦鹏), Jianyuan Xiao(肖建元), Xianhao Rao(饶贤昊), Pengfei Zhang(张鹏飞), Yolbarsop Adil(阿迪里), and Ge Zhuang(庄革). Chin. Phys. B, 2025, 34(1): 015202.
[5] Enhanced mechanical squeezing in an optomechanical system via backward stimulated Brillouin scattering
Shan-Shan Chen(陈珊珊), Yi-Long Xie(谢亦龙), Jing-Jing Zhang(张京京), Na-Na Zhang(张娜娜), Yong-Rui Guo(郭永瑞), Huan Yang(杨桓), and Yong Ma(马勇). Chin. Phys. B, 2025, 34(1): 014201.
[6] A novel dual-channel thermo-optic locking method for the whispering gallery mode microresonator
Wenjie Fan(范文杰), Wenyao Liu(刘文耀), Ziwen Pan(潘梓文), Rong Wang(王蓉), Lai Liu(刘来), Enbo Xing(邢恩博), Yanru Zhou(周彦汝), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2024, 33(5): 054206.
[7] Multiple mixed state variable incremental integration for reconstructing extreme multistability in a novel memristive hyperchaotic jerk system with multiple cubic nonlinearity
Meng-Jiao Wang(王梦蛟) and Lingfang Gu(辜玲芳). Chin. Phys. B, 2024, 33(2): 020504.
[8] Quasi-anti-parity—time-symmetric single-resonator micro-optical gyroscope with Kerr nonlinearity
Jingtong Geng(耿靖童), Shuyi Xu(徐书逸), Ting Jin(靳婷), Shulin Ding(丁舒林), Liu Yang(杨柳), Ying Wang(王颖), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2024, 33(1): 014208.
[9] Nonlinear perturbation of a high-order exceptional point: Skin discrete breathers and the hierarchical power-law scaling
Hui Jiang(江慧), Enhong Cheng(成恩宏), Ziyu Zhou(周子榆), and Li-Jun Lang(郎利君). Chin. Phys. B, 2023, 32(8): 084203.
[10] Nonlinear wave propagation in acoustic metamaterials with bilinear nonlinearity
Shiqi Liang(梁诗琪), Jiehui Liu(刘杰惠), Yun Lai(赖耘), and Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2023, 32(4): 044301.
[11] Absorption spectra and enhanced Kerr nonlinearity in a four-level system
Hao-Jie Huangfu(皇甫浩杰), Ying-Jie Du(杜英杰), and Ai-Hua Gao(高爱华). Chin. Phys. B, 2023, 32(11): 114214.
[12] Adiabatic evolution of optical beams of arbitrary shapes in nonlocal nonlinear media
Jiarui Che(车佳瑞), Yuxin Zheng(郑喻心), Guo Liang(梁果), and Qi Guo(郭旗). Chin. Phys. B, 2023, 32(10): 104207.
[13] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[14] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[15] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
No Suggested Reading articles found!