Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 104207    DOI: 10.1088/1674-1056/acd689
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Adiabatic evolution of optical beams of arbitrary shapes in nonlocal nonlinear media

Jiarui Che(车佳瑞)1,2, Yuxin Zheng(郑喻心)1,2, Guo Liang(梁果)1,2,†, and Qi Guo(郭旗)1,‡
1 School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China;
2 School of Electrical and Electronic Engineering, Shangqiu Normal University, Shangqiu 476000, China
Abstract  We discuss evolution of Hermite-Gaussian beams of different orders in nonlocal nonlinear media whose characteristic length is set as different functions of propagation distance, using the variational approach. It is proved that as long as the characteristic length varies slowly enough, all the Hermite-Gaussian beams can propagate adiabatically. When the characteristic length gradually comes back to its initial value after changes, all the Hermite-Gaussian beams can adiabatically restore to their own original states. The variational results agree well with the numerical simulations. Arbitrary shaped beams synthesized by Hermite-Gaussian modes can realize adiabatic evolution in nonlocal nonlinear media with gradual characteristic length.
Keywords:  nonlocal nonlinearity      variational approach      Hermite-Gaussian beam  
Received:  25 March 2023      Revised:  09 May 2023      Accepted manuscript online:  18 May 2023
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.65.Jx (Beam trapping, self-focusing and defocusing; self-phase modulation)  
Fund: Project supported by the Key Research Fund of Higher Education of Henan Province, China (Grant No. 23A140021), the Open Subject of the Key Laboratory of Weak Light Nonlinear Photonics of Nankai University (Grant No. OS21-3), and the International Scientific and Technological Cooperation Projects of Henan Province, China (Grant No. 232102520001).
Corresponding Authors:  Guo Liang, Qi Guo     E-mail:  liangguo0916@163.com;guoq@scnu.edu.cn

Cite this article: 

Jiarui Che(车佳瑞), Yuxin Zheng(郑喻心), Guo Liang(梁果), and Qi Guo(郭旗) Adiabatic evolution of optical beams of arbitrary shapes in nonlocal nonlinear media 2023 Chin. Phys. B 32 104207

[1] Boyd R W 2008 Nonlinear Optics (Amsterdam: Elsevier)
[2] Assanto G 2012 Nematicons: Spatial Optical Solitons in Nematic Liquid Crystals (Chichester: John Wiley and Sons)
[3] Dreischuh A, Neshev D N, Petersen D E, Bang O and Krolikowski W 2006 Phys. Rev. Lett. 96 043901
[4] Rotschild C, Cohen O, Manela O, Segev M and Carmon T 2005 Phys. Rev. Lett. 95 213904
[5] Suter D and Blasberg T 1993 Phys. Rev. A 48 4583
[6] Guo Q, Lu D and Deng D 2015 Advances in Nonlinear Optics (Berlin: De Gruyter) 227
[7] Marcucci G, Pierangeli D, Gentilini S, Ghofraniha N, Chen Z and Conti C 2019 Adv. Phys. X 4 1662733
[8] Krolikowski W, Bang O, Briedis D, et al. 2005 Proc. SPIE 5949 59490B
[9] Liang G, Zhang H, Fang L, Shou Q, Hu W and Guo Q 2020 Laser Photon. Rev. 14 2000141
[10] Zhong L, Li Y, Chen Y, Hong W, Hu W and Guo Q 2017 Sci. Rep. 7 41438
[11] Buccoliero D, Desyatnikov A S, Krolikowski W and Kivshar Y S 2008 Opt. Lett. 33 198
[12] Buccoliero D, Desyatnikov A S, Krolikowski W and Kivshar Y S 2007 Phys. Rev. Lett. 98 053901
[13] Nikolov N I, Neshev D, Królikowski W, Bang O, Rasmussen J J and Christiansen P L 2004 Opt. Lett. 29 286
[14] Królikowski W, Saffman M, Luther-Davies B and Denz C 1998 Phys. Rev. Lett. 80 3240
[15] Chen P, Wang H, Chen M and Zhang L 2020 Opt. Commun. 459 124915
[16] Chen Y, Ge L, Wang X and Shen M 2022 Commun. Theor. Phys. 74 025501
[17] Bang O, Krolikowski W, Wyller J and Rasmussen J J 2002 Phys. Rev. E 66 046619
[18] Snyder A W and Mitchell D J 1997 Science 276 1538
[19] Anderson D 1983 Phys. Rev. A 27 3135
[20] Liang G, Hong W, Luo T, Wang J, Li Y, Guo Q, Hu W and Christodoulides D N 2019 Phys. Rev. A 99 063808
[21] Liang G, Kong X, Li Y and Wang Q 2021 Opt. Express 29 9618
[22] Haus H A 1984 Waves and Fields in Optoelectronics (Englewood Cliffs, NJ: Prentice-Hall) p. 101
[23] Shou Q, Liang Y, Jiang Q, Zheng Y, Lan S, Hu W and Guo Q 2009 Opt. Lett. 34 3523
[24] Rasmussen P D, Bang O and Królikowski W 2005 Phys. Rev. E 72 066611
[25] Hu W, Zhang T, Guo Q, Xuan L and Lan S 2006 Appl. Phys. Lett. 89 071111
[26] Liang G, Liu J, Hu W and Guo Q 2022 Appl. Sci. 12 2386
[27] Qin J, Dong G and Malomed B A 2015 Phys. Rev. Lett. 115 023901
[28] Liang G, Hong W and Guo Q 2016 Opt. Express 24 28784
[29] Wyller J, Krolikowski W, Bang O and Rasmussen J J 2002 Phys. Rev. E 66 066615
[30] Guo Q, Luo B and Chi S 2006 Opt. Commun. 259 336
[31] Królikowski W and Bang O 2000 Phys. Rev. E 63 016610
[32] Shankar R 1994 Principles of Quantum Mechanics 2nd edn. (New York: Plenum) p. 478
[33] Liang G and Wang Q 2021 New J. Phys. 23 103036
[1] Coherent interaction and action-counteraction theory in small polaron systems, and ground state properties
Zhi-Hua Luo(罗质华) and Chao-Fan Yu(余超凡). Chin. Phys. B, 2022, 31(11): 117104.
[2] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[3] Propagations of Fresnel diffraction accelerating beam in Schrödinger equation with nonlocal nonlinearity
Yagang Zhang(张亚港), Yuheng Pei(裴宇恒), Yibo Yuan(袁一博), Feng Wen(问峰), Yuzong Gu(顾玉宗), and Zhenkun Wu(吴振坤). Chin. Phys. B, 2021, 30(11): 114209.
[4] Collapse arrest in the space-fractional Schrödinger equation with an optical lattice
Manna Chen(陈曼娜), Hongcheng Wang(王红成), Hai Ye(叶海), Xiaoyuan Huang(黄晓园), Ye Liu(刘晔), Sumei Hu(胡素梅), and Wei Hu(胡巍). Chin. Phys. B, 2021, 30(10): 104206.
[5] Soliton guidance and nonlinear coupling for polarized vector spiraling elliptic Hermite-Gaussian beams in nonlocal nonlinear media
Chunzhi Sun(孙春志), Guo Liang(梁果). Chin. Phys. B, 2019, 28(7): 074206.
[6] Improvement of variational approach in an interacting two-fermion system
Liu Yan-Xia (刘彦霞), Ye Jun (叶君), Li Yuan-Yuan (李源远), Zhang Yun-Bo (张云波). Chin. Phys. B, 2015, 24(8): 086701.
[7] Elliptical Gaussian solitons in synthetic nonlocal nonliear media
Cheng Shuang (程爽), Wang Qi (王奇), Ge Li-Juan (葛丽娟), Shi Jie-Long (施解龙), Ding Hai-Xia (丁海霞), Shen Ming (申明). Chin. Phys. B, 2011, 20(5): 054206.
[8] Dynamics of vector solitons in two-component Bose--Einstein condensates with time-dependent interactions and harmonic potential
Zhou Zheng(周政), Yu Hui-You(俞慧友), and Yan Jia-Ren(颜家壬) . Chin. Phys. B, 2010, 19(1): 010304.
[9] Gaussian solitons in nonlocal media: variational analysis
Shen Ming(申明), Xi Ning(西宁), Kong Qian(孔茜), Ge Li-Juan(葛丽娟), Shi Jie-Long(施解龙), and Wang Qi(王奇). Chin. Phys. B, 2009, 18(7): 2822-2827.
[10] Variational solutions for Hermite--Gaussian solitons in nonlocal nonlinear media
Bai Dong-Feng(白东峰), Huang Chang-Chun(黄长春), He Jun-Feng(贺军峰), and Wang Yi(王毅). Chin. Phys. B, 2009, 18(7): 2853-2857.
[11] Effects of localized impurity on a dark soliton in a Bose--Einstein condensate with an external magnetic trap
Li Hong(李宏), and Wang Dong-Ning(王东宁). Chin. Phys. B, 2009, 18(7): 2659-2666.
[12] Solitons in optical lattices with nonlocal nonlinearity
Ge Li-Juan(葛丽娟), Wang Qi(王奇), , Shen Ming(申明), Shi Jie-Long(施解龙), , Kong Qian(孔茜), and Hou Peng(侯鹏). Chin. Phys. B, 2009, 18(2): 616-623.
[13] Surface superlattice solitons in nonlocal nonlinear media
Huang Hui-Chang(黄惠昌), He Ying-Ji(何影记), and Wang He-Zhou(汪河洲). Chin. Phys. B, 2009, 18(11): 4919-4923.
[14] A polynomial approximation for the scattering wavefunction of an arbitrary spherically symmetric potential
Li Pei-Jin (黎培进), Bao Cheng-Guang (鲍诚光). Chin. Phys. B, 2002, 11(2): 105-108.
[15] FILAMENTATION INSTABILITY OF LASER BEAMS IN NONLOCAL NONLINEAR MEDIA
Wen Shuang-chun (文双春), Fan Dian-yuan (范滇元). Chin. Phys. B, 2001, 10(11): 1032-1036.
No Suggested Reading articles found!