ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
|
|
|
Enhanced mechanical squeezing in an optomechanical system via backward stimulated Brillouin scattering |
Shan-Shan Chen(陈珊珊)1, Yi-Long Xie(谢亦龙)1, Jing-Jing Zhang(张京京)1, Na-Na Zhang(张娜娜)1, Yong-Rui Guo(郭永瑞)1, Huan Yang(杨桓)1,†, and Yong Ma(马勇)1,2,‡ |
1 School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; 2 China Electronics Technology Group Corporation 44 th Research Institute, Chongqing 400065, China |
|
|
Abstract We investigate theoretically the enhancement of mechanical squeezing in a multimode optomechanical system by introducing a coherent phonon-photon interaction via the backward stimulated Brillouin scattering (BSBS) process. The coherent photon-phonon interaction where two optical modes couple to a Brillouin acoustic mode with a large decay rate provides an extra channel for the cooling of a Duffing mechanical oscillator. The squeezing degree and the robustness to the thermal noises of the Duffing mechanical mode can be enhanced greatly. When the Duffing nonlinearity is weak, the squeezing degree of the mechanical mode in the presence of BSBS can be improved by more than one order of magnitude compared with that in the absence of BSBS. Our scheme may be extended to other quantum systems to study novel quantum effects.
|
Received: 18 September 2024
Revised: 23 October 2024
Accepted manuscript online: 30 October 2024
|
PACS:
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
42.50.-p
|
(Quantum optics)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
Fund: Project supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202400624), the Natural Science Foundation of Chongqing CSTC (Grant No. CSTB2022NSCQBHX0020), the China Electronics Technology Group Corporation 44th Research Institute (Grant No. 6310001-2), the Project Grant “Noninvasive Sensing Measurement based on Terahertz Technology” from Province and MOE Collaborative Innovation Centre for New Generation Information Networking and Terminals, the Key Research Program of CQUPT on Interdisciplinary and Emerging Field (A2018-01), and the Venture & Innovation Support program for Chongqing Overseas Returnees Year 2022. |
Corresponding Authors:
Huan Yang, Yong Ma
E-mail: yanghuan@cqupt.edu.cn;mayong@cqupt.edu.cn
|
Cite this article:
Shan-Shan Chen(陈珊珊), Yi-Long Xie(谢亦龙), Jing-Jing Zhang(张京京), Na-Na Zhang(张娜娜), Yong-Rui Guo(郭永瑞), Huan Yang(杨桓), and Yong Ma(马勇) Enhanced mechanical squeezing in an optomechanical system via backward stimulated Brillouin scattering 2025 Chin. Phys. B 34 014201
|
[1] Shen Y R and Bloembergen N 1965 Phys. Rev. 137 A1787 [2] Yariv A 1965 IEEE Journal of Quantum Electronics 1 28 [3] Cheng R J, Li X X, Wang Q, Liu D J, Huang Z M, Lv S Y, Zhou T Z, Zhang S T, Li X M and Chen Z J 2024 Chin. Phys. B 33 015206 [4] He X, Harris G I, Baker C G, Sawadsky A, Sfendla Y L, Sachkou Y P, Forstner S and Bowen W P 2020 Nat. Phys. 16 417 [5] Lin G, Diallo S, Saleh K, Martinenghi R, Beugnot J C, Sylvestre T and Chembo Y K 2014 Appl. Phys. Lett. 105 231103 [6] Honda Y, Yoshiki W, Tetsumoto T, Fujii S, Furusawa K, Sekine N and Tanabe T 2018 Appl. Phys. Lett. 112 201105 [7] Bai Y, Zhang M, Shi Q, Ding S, Qin Y, Xie Z, Jiang X and Xiao M 2021 Phys. Rev. Lett. 126 063901 [8] Li J, Suh M G and Vahala K 2017 Optica 4 346 [9] Bahl G, Tomes M, Marquardt F and Carmon T 2012 Nat. Phys. 3 203 [10] Savchenkov A, Matsko A, Ilchenko V, Seidel D and Maleki L 2011 Opt. Lett. 36 3338 [11] Bahl G, Zehnpfennig J, Tomes M and Carmon T 2011 Nat. Commun. 2 403 [12] Dong C H, Shen Z, Zou C L, Zhang Y L, Fu W and Guo G C 2015 Nat. Commun. 6 6193 [13] Grudinin I S, Matsko A B and Maleki L 2009 Phys. Rev. Lett. 102 043902 [14] Tomes M and Carmon T 2009 Phys. Rev. Lett. 102 113601 [15] Enzian G, Szczykulska M, Silver J, Del Bino L, Zhang S, Walmsley I A, Del’Haye P and Vanner M R 2019 Optica 6 7 [16] Enzian G, Price J J, Freisem L, Nunn J, Janousek J, Buchler B C, Lam P K and Vanner M R 2021 Phys. Rev. Lett. 126 033601 [17] Nunnenkamp A, Sudhir V, Feofanov A, Roulet A and Kippenberg T 2014 Phys. Rev. Lett. 113 023604 [18] Zhang Y L, Yang C S, Shen Z, Dong C H, Guo G C, Zou C L and Zou X B 2020 Phys. Rev. A 101 063836 [19] Shen Z, Zhang Y L, Zou C L, Guo G C and Dong C H 2021 Phys. Rev. Lett. 126 163604 [20] Kippenberg T J and Vahala K J 2008 Science 321 1172 [21] Aspelmeyer M, Meystre P and Schwab K 2012 Physics Today 65 29 [22] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391 [23] Chen S S, Zhang H, Song X K, Deng F G, Wang H B and Yang G J 2018 Annalen der Physik 530 1800239 [24] Chen S S, Zhang H, Ai Q and Yang G J 2019 Phys. Rev. A 100 052306 [25] Huang S and Agarwal G 2011 Phys. Rev. A 83 043826 [26] Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520 [27] Safavi-Naeini A H, Alegre T M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E and Painter O 2011 Nature 472 69 [28] Lü X Y, Liao J Q, Tian L and Nori F 2015 Phys. Rev. A 91 013834 [29] Liao J Q, Law C, et al. 2011 Phys. Rev. A 83 033820 [30] Chen S S, Meng S S, Deng H and Yang G J 2021 Annalen der Physik 533 2000343 [31] Teufel J D, Donner T, Li D, Harlow J W, Allman M, Cicak K, Sirois A J, Whittaker J D, Lehnert K W and Simmonds R W 2011 Nature 475 359 [32] Meenehan S M, Cohen J D, MacCabe G S, Marsili F, Shaw M D and Painter O 2015 Phys. Rev. X 4 041002 [33] Clark J B, Lecocq F, Simmonds R W, Aumentado J and Teufel J D 2017 Nature 541 191 [34] Caves C M, Thorne K S, Drever R W, Sandberg V D and Zimmermann M 1980 Rev. Mod. Phys. 52 341 [35] LaHaye M, Buu O, Camarota B and Schwab K 2004 Science 304 74 [36] Braunstein S L and Van Loock P 2005 Rev. Mod. Phys. 77 513 [37] Jähne K, Genes C, Hammerer K, Wallquist M, Polzik E and Zoller P 2009 Phys. Rev. A 79 063819 [38] Huang S and Agarwal G 2010 Phys. Rev. A 82 033811 [39] Kronwald A, Marquardt F and Clerk A A 2013 Phys. Rev. A 88 063833 [40] Wollman E E, Lei C, Weinstein A, Suh J, Kronwald A, Marquardt F, Clerk A A and Schwab K 2015 Science 349 952 [41] Zhang R, Fang Y, Wang Y Y, Chesi S and Wang Y D 2019 Phys. Rev. A 99 043805 [42] Mari A and Eisert J 2009 Phys. Rev. Lett. 103 213603 [43] Schmidt M, Ludwig M and Marquardt F 2012 New J. Phys. 12 125005 [44] Bai C H, Wang D Y, Zhang S, Liu S and Wang H F 2019 Photonics Research 7 1229 [45] Blencowe M 2004 Physics Reports 395 159 [46] Xiang Z L, Ashhab S, You J and Nori F 2013 Rev. Mod. Phys. 85 623 [47] Jacobs K and Landahl A J 2009 Phys. Rev. Lett. 103 067201 [48] Tian L 2011 Phys. Rev. B 84 035417 [49] Guo Y, Li K, Nie W and Li Y 2014 Phys. Rev. A 90 053841 [50] Gorodetksy M, Schliesser A, Anetsberger G, Deleglise S and Kippenberg T J 2010 Opt. Express 18 23236 [51] Park Y S and Wang H 2009 Nat. Phys. 5 489 [52] Schliesser A, Arcizet O, Rivière R, Anetsberger G and Kippenberg T J 2009 Nat. Phys. 5 509 [53] Chan J, Alegre T M, Safavi-Naeini A H, Hill J T, Krause A, Gr?blacher S, Aspelmeyer M and Painter O 2011 Nature 478 89 [54] Vitali D, Gigan S, Ferreira A, Böhm H, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|