Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 014201    DOI: 10.1088/1674-1056/ad8cc0
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev  

Enhanced mechanical squeezing in an optomechanical system via backward stimulated Brillouin scattering

Shan-Shan Chen(陈珊珊)1, Yi-Long Xie(谢亦龙)1, Jing-Jing Zhang(张京京)1, Na-Na Zhang(张娜娜)1, Yong-Rui Guo(郭永瑞)1, Huan Yang(杨桓)1,†, and Yong Ma(马勇)1,2,‡
1 School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
2 China Electronics Technology Group Corporation 44 th Research Institute, Chongqing 400065, China
Abstract  We investigate theoretically the enhancement of mechanical squeezing in a multimode optomechanical system by introducing a coherent phonon-photon interaction via the backward stimulated Brillouin scattering (BSBS) process. The coherent photon-phonon interaction where two optical modes couple to a Brillouin acoustic mode with a large decay rate provides an extra channel for the cooling of a Duffing mechanical oscillator. The squeezing degree and the robustness to the thermal noises of the Duffing mechanical mode can be enhanced greatly. When the Duffing nonlinearity is weak, the squeezing degree of the mechanical mode in the presence of BSBS can be improved by more than one order of magnitude compared with that in the absence of BSBS. Our scheme may be extended to other quantum systems to study novel quantum effects.
Keywords:  mechanical squeezing      optomechanical system      backward stimulated Brillouin scattering      Duffing nonlinearity  
Received:  18 September 2024      Revised:  23 October 2024      Accepted manuscript online:  30 October 2024
PACS:  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  42.50.-p (Quantum optics)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202400624), the Natural Science Foundation of Chongqing CSTC (Grant No. CSTB2022NSCQBHX0020), the China Electronics Technology Group Corporation 44th Research Institute (Grant No. 6310001-2), the Project Grant “Noninvasive Sensing Measurement based on Terahertz Technology” from Province and MOE Collaborative Innovation Centre for New Generation Information Networking and Terminals, the Key Research Program of CQUPT on Interdisciplinary and Emerging Field (A2018-01), and the Venture & Innovation Support program for Chongqing Overseas Returnees Year 2022.
Corresponding Authors:  Huan Yang, Yong Ma     E-mail:  yanghuan@cqupt.edu.cn;mayong@cqupt.edu.cn

Cite this article: 

Shan-Shan Chen(陈珊珊), Yi-Long Xie(谢亦龙), Jing-Jing Zhang(张京京), Na-Na Zhang(张娜娜), Yong-Rui Guo(郭永瑞), Huan Yang(杨桓), and Yong Ma(马勇) Enhanced mechanical squeezing in an optomechanical system via backward stimulated Brillouin scattering 2025 Chin. Phys. B 34 014201

[1] Shen Y R and Bloembergen N 1965 Phys. Rev. 137 A1787
[2] Yariv A 1965 IEEE Journal of Quantum Electronics 1 28
[3] Cheng R J, Li X X, Wang Q, Liu D J, Huang Z M, Lv S Y, Zhou T Z, Zhang S T, Li X M and Chen Z J 2024 Chin. Phys. B 33 015206
[4] He X, Harris G I, Baker C G, Sawadsky A, Sfendla Y L, Sachkou Y P, Forstner S and Bowen W P 2020 Nat. Phys. 16 417
[5] Lin G, Diallo S, Saleh K, Martinenghi R, Beugnot J C, Sylvestre T and Chembo Y K 2014 Appl. Phys. Lett. 105 231103
[6] Honda Y, Yoshiki W, Tetsumoto T, Fujii S, Furusawa K, Sekine N and Tanabe T 2018 Appl. Phys. Lett. 112 201105
[7] Bai Y, Zhang M, Shi Q, Ding S, Qin Y, Xie Z, Jiang X and Xiao M 2021 Phys. Rev. Lett. 126 063901
[8] Li J, Suh M G and Vahala K 2017 Optica 4 346
[9] Bahl G, Tomes M, Marquardt F and Carmon T 2012 Nat. Phys. 3 203
[10] Savchenkov A, Matsko A, Ilchenko V, Seidel D and Maleki L 2011 Opt. Lett. 36 3338
[11] Bahl G, Zehnpfennig J, Tomes M and Carmon T 2011 Nat. Commun. 2 403
[12] Dong C H, Shen Z, Zou C L, Zhang Y L, Fu W and Guo G C 2015 Nat. Commun. 6 6193
[13] Grudinin I S, Matsko A B and Maleki L 2009 Phys. Rev. Lett. 102 043902
[14] Tomes M and Carmon T 2009 Phys. Rev. Lett. 102 113601
[15] Enzian G, Szczykulska M, Silver J, Del Bino L, Zhang S, Walmsley I A, Del’Haye P and Vanner M R 2019 Optica 6 7
[16] Enzian G, Price J J, Freisem L, Nunn J, Janousek J, Buchler B C, Lam P K and Vanner M R 2021 Phys. Rev. Lett. 126 033601
[17] Nunnenkamp A, Sudhir V, Feofanov A, Roulet A and Kippenberg T 2014 Phys. Rev. Lett. 113 023604
[18] Zhang Y L, Yang C S, Shen Z, Dong C H, Guo G C, Zou C L and Zou X B 2020 Phys. Rev. A 101 063836
[19] Shen Z, Zhang Y L, Zou C L, Guo G C and Dong C H 2021 Phys. Rev. Lett. 126 163604
[20] Kippenberg T J and Vahala K J 2008 Science 321 1172
[21] Aspelmeyer M, Meystre P and Schwab K 2012 Physics Today 65 29
[22] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[23] Chen S S, Zhang H, Song X K, Deng F G, Wang H B and Yang G J 2018 Annalen der Physik 530 1800239
[24] Chen S S, Zhang H, Ai Q and Yang G J 2019 Phys. Rev. A 100 052306
[25] Huang S and Agarwal G 2011 Phys. Rev. A 83 043826
[26] Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
[27] Safavi-Naeini A H, Alegre T M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E and Painter O 2011 Nature 472 69
[28] Lü X Y, Liao J Q, Tian L and Nori F 2015 Phys. Rev. A 91 013834
[29] Liao J Q, Law C, et al. 2011 Phys. Rev. A 83 033820
[30] Chen S S, Meng S S, Deng H and Yang G J 2021 Annalen der Physik 533 2000343
[31] Teufel J D, Donner T, Li D, Harlow J W, Allman M, Cicak K, Sirois A J, Whittaker J D, Lehnert K W and Simmonds R W 2011 Nature 475 359
[32] Meenehan S M, Cohen J D, MacCabe G S, Marsili F, Shaw M D and Painter O 2015 Phys. Rev. X 4 041002
[33] Clark J B, Lecocq F, Simmonds R W, Aumentado J and Teufel J D 2017 Nature 541 191
[34] Caves C M, Thorne K S, Drever R W, Sandberg V D and Zimmermann M 1980 Rev. Mod. Phys. 52 341
[35] LaHaye M, Buu O, Camarota B and Schwab K 2004 Science 304 74
[36] Braunstein S L and Van Loock P 2005 Rev. Mod. Phys. 77 513
[37] Jähne K, Genes C, Hammerer K, Wallquist M, Polzik E and Zoller P 2009 Phys. Rev. A 79 063819
[38] Huang S and Agarwal G 2010 Phys. Rev. A 82 033811
[39] Kronwald A, Marquardt F and Clerk A A 2013 Phys. Rev. A 88 063833
[40] Wollman E E, Lei C, Weinstein A, Suh J, Kronwald A, Marquardt F, Clerk A A and Schwab K 2015 Science 349 952
[41] Zhang R, Fang Y, Wang Y Y, Chesi S and Wang Y D 2019 Phys. Rev. A 99 043805
[42] Mari A and Eisert J 2009 Phys. Rev. Lett. 103 213603
[43] Schmidt M, Ludwig M and Marquardt F 2012 New J. Phys. 12 125005
[44] Bai C H, Wang D Y, Zhang S, Liu S and Wang H F 2019 Photonics Research 7 1229
[45] Blencowe M 2004 Physics Reports 395 159
[46] Xiang Z L, Ashhab S, You J and Nori F 2013 Rev. Mod. Phys. 85 623
[47] Jacobs K and Landahl A J 2009 Phys. Rev. Lett. 103 067201
[48] Tian L 2011 Phys. Rev. B 84 035417
[49] Guo Y, Li K, Nie W and Li Y 2014 Phys. Rev. A 90 053841
[50] Gorodetksy M, Schliesser A, Anetsberger G, Deleglise S and Kippenberg T J 2010 Opt. Express 18 23236
[51] Park Y S and Wang H 2009 Nat. Phys. 5 489
[52] Schliesser A, Arcizet O, Rivière R, Anetsberger G and Kippenberg T J 2009 Nat. Phys. 5 509
[53] Chan J, Alegre T M, Safavi-Naeini A H, Hill J T, Krause A, Gr?blacher S, Aspelmeyer M and Painter O 2011 Nature 478 89
[54] Vitali D, Gigan S, Ferreira A, Böhm H, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
[1] Nonlinearly induced entanglement in dissipatively coupled optomechanical system
Wen-Quan Yang(杨文全), Xuan Leng(冷轩), Jiong Cheng(程泂), and Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2024, 33(6): 060313.
[2] Nonlinear enhanced mass sensor based on optomechanical system
Xin-Xin Man(满鑫鑫), Jing Sun(孙静), Wen-Zhao Zhang(张闻钊), Lijuan Luo(罗丽娟), and Guangri Jin(金光日). Chin. Phys. B, 2024, 33(12): 120303.
[3] Nonreciprocal mechanical entanglement in a spinning optomechanical system
Shan-Shan Chen(陈珊珊), Jing-Jing Zhang(张京京), Jia-Neng Li(李嘉能), Na-Na Zhang(张娜娜), Yong-Rui Guo(郭永瑞), and Huan Yang(杨桓). Chin. Phys. B, 2024, 33(11): 110305.
[4] Enhancement of the group delay in quadratic coupling optomechanical systems subjected to an external force
Jimmi Hervé Talla Mbé, Ulrich Chancelin Tiofack Demanou, Christian Kenfack-Sadem, and Martin Tchoffo. Chin. Phys. B, 2023, 32(12): 124202.
[5] Quantum estimation of rotational speed in optomechanics
Hao Li(李浩) and Jiong Cheng(程泂). Chin. Phys. B, 2023, 32(10): 100602.
[6] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[7] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[8] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[9] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[10] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[11] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[12] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[13] Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system
Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明). Chin. Phys. B, 2021, 30(3): 034209.
[14] Tunable ponderomotive squeezing in an optomechanical system with two coupled resonators
Qin Wu(吴琴). Chin. Phys. B, 2021, 30(2): 020303.
[15] Ground-state cooling based on a three-cavity optomechanical system in the unresolved-sideband regime
Jing Wang(王婧). Chin. Phys. B, 2021, 30(2): 024204.
No Suggested Reading articles found!