1 Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China; 2 Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract Ising superconductivity, induced by the strong spin-orbit coupling (SOC) and inversion symmetry breaking, can lead to the in-plane upper critical field exceeding the Pauli limit and hold significant potential for advancing the study of topological superconductivity. However, the enhancement of Ising superconductivity is still a challenging problem, important for engineering Majorana fermions and exploring topological quantum computing. In this study, we investigated the superconducting properties of a series of van der Waals NbSeTe nanosheets. The Ising superconductivity in NbSeTe nanosheets can be significantly enhanced by the substitution of Te, an element with strong SOC. The fitted in-plane upper critical field of NbSeTe nanosheets at absolute zero temperature reaches up to 3.2 times the Pauli limit. Angular dependence of magnetoresistance measurements reveals a distinct two-fold rotational symmetry in the superconducting transition region, highlighting the role of strong SOC. In addition, the fitting results of the Berezinskii-Kosterlitz-Thouless (BKT) transition and the two-dimensional (2D) Tinkham formula provide strong evidence for 2D superconductivity. These findings offer new perspectives for the design and modulation of the Ising superconducting state and pave the way for their potential applications in topological superconductivity and quantum technologies.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62488201 and 1240041502), the China Postdoctoral Science Foundation (Grant No. 2024T170990), the National Key R&D Program of China (Grant No. 2022YFA1204100), the Chinese Academy of Sciences (Grant No. XDB33030100), and the Innovation Program of Quantum Science and Technology (Grant No. 2021ZD0302700).
Jingyuan Qu(曲静远), Guojing Hu(胡国静), Cuili Xiang(向翠丽), Hui Guo(郭辉), Senhao Lv(吕森浩), Yechao Han(韩烨超), Guoyu Xian(冼国裕), Qi Qi(齐琦), Zhen Zhao(赵振), Ke Zhu(祝轲), Xiao Lin(林晓), Lihong Bao(鲍丽宏), Yongjin Zou(邹勇进), Lixian Sun(孙立贤), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧) Strongly tunable Ising superconductivity in van der Waals NbSe2-xTex nanosheets 2025 Chin. Phys. B 34 067401
[1] Houzet M and Mineev V 2006 Phys. Rev. B 74 144522 [2] Cao G H and Zhu Z W 2018 Chin. Phys. B 27 107401 [3] Clogston A M 1962 Phys. Rev. Lett. 9 266 [4] Ma K, Gornicka K, Lef‘evre R, Yang Y, Rønnow H M, Jeschke H O, Klimczuk T and Von Rohr F O 2021 ACS Mater. Au 1 55 [5] Agosta C, Jin J, Coniglio W, Smith B, Cho K, Stroe I, Martin C, Tozer S, Murphy T and Palm E 2012 Phys. Rev. B 85 214514 [6] Wang X,Wang L, Liu Y, GaoW,Wu Y, Xu Z, Jin H, Zhang L, PengW and Wang Z 2023 Phys. C 606 1354223 [7] Cho C W, Ng C Y, Wong C H, Abdel-Hafiez M, Vasiliev A N, Chareev D A, Lebed A and Lortz R 2022 New J. Phys. 24 083001 [8] Zhou B T, Yuan N F Q, Jiang H L and Law K T 2016 Phys. Rev. B 93 180501 [9] Navarro-Moratalla E, Island J O, Mañas-Valero S, Pinilla-Cienfuegos E, Castellanos-Gomez A, Quereda J, Rubio-Bollinger G, Chirolli L, Silva-Guillén J A, Agraït N, Steele G A, Guinea F, van der Zant H S J and Coronado E 2016 Nat. Commun. 7 11043 [10] Lu W T, Mao Y and Sun Q F 2023 Chin. Phys. B 32 107403 [11] Zhou B T, Yuan N F, Jiang H L and Law K T 2016 Phys. Rev. B 93 180501 [12] Wickramaratne D, Khmelevskyi S, Agterberg D F and Mazin I 2020 Phys. Rev. X 10 041003 [13] Baidya P, Sahani D, Kundu H K, Kaur S, Tiwari P, Bagwe V, Jesudasan J, Narayan A, Raychaudhuri P and Bid A 2021 Phys. Rev. B 104 174510 [14] Li L, Zhang S, Hu G, Guo L, Wei T, Qin W, Xiang B, Zeng C, Zhang Z and Cui P 2022 Nano Lett. 22 6767 [15] de la Barrera S C, Sinko M R, Gopalan D P, Sivadas N, Seyler K L, Watanabe K, Taniguchi T, Tsen A W, Xu X and Xiao D 2018 Nat. Commun. 9 1427 [16] Kormányos A, Zólyomi V, Drummond N D and Burkard G 2014 Phys. Rev. X 4 011034 [17] Bhowal S and Satpathy S 2020 Phys. Rev. B 102 035409 [18] Lu J, Zheliuk O, Leermakers I, Yuan N F, Zeitler U, Law K T and Ye J 2015 Science 350 1353 [19] Sajadi E, Palomaki T, Fei Z, Zhao W, Bement P, Olsen C, Luescher S, Xu X, Folk J A, Cobden D H 2018 Science 362 922 [20] Qin M, Zhang R, Lin Z, Feng Z, Wei X, Blanco Alvarez S, Dong C, Silhanek A V, Zhu B and Yuan J 2020 J. Supercond. 33 159 [21] Zhang H, Rousuli A, Shen S, Zhang K,Wang C, Luo L,Wang J,Wu Y, Xu Y and Duan W 2020 Sci. Bull. 65 188 [22] Yu L, Mi M, Xiao H,Wang S, Sun Y, Lyu B, Bai L, Shen B, Liu M and Wang S 2024 ACS Appl. Mater. 16 59049 [23] Ma L, Shi M, Kang B, Peng K, Meng F, Zhu C, Cui J, Sun Z, Ma D and Wang H 2020 Phys. Rev. Mater. 4 124803 [24] Aikebaier F, Heikkilä T T and Lado J 2022 Phys. Rev. B 105 054506 [25] Wickramaratne D, Haim M, Khodas M and Mazin I 2021 Phys. Rev. B 104 L060501 [26] Wang C, Liu S, Jeon H, Jia Y and Cho J H 2022 Phys. Rev. Mater. 6 094801 [27] Burrard-Lucas M, Free D G, Sedlmaier S J, Wright J D, Cassidy S J, Hara Y, Corkett A J, Lancaster T, Baker P J, Blundell S J and Clarke S J 2013 Nat. Mater. 12 15 [28] Niu C, Qiu G, Wang Y, Zhang Z, Si M, Wu W and Ye P D 2020 Phys. Rev. B 101 205414 [29] Fartab D S, Guimarães J, Schmidt M and Zhang H 2023 Phys. Rev. B 108 115305 [30] Ji J Y, Hu Y, Bao T, Xu Y, Huang M, Chen J, Xue Q K and Zhang D 2024 Phys. Rev. B 110 104509 [31] Wang C, Lian B, Guo X, Mao J, Zhang Z, Zhang D, Gu B L, Xu Y and Duan W 2019 Phys. Rev. Lett. 123 126402 [32] Hu X and Ran Y 2022 Phys. Rev. B 106 125136 [33] Mkrtchyan V, Kumar R, White M, Yanxon H and Cornelius A 2017 Chem. Phys. Lett. 692 249 [34] Yan D, Wang S, Lin Y, Wang G, Zeng Y, Boubeche M, He Y, Ma J, Wang Y, Yao D X and Luo H 2020 J. Phys. Condens. Matter 32 025702 [35] Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J and Mak K F 2016 Nat. Phys. 12 139 [36] Hamill A, Heischmidt B, Sohn E, Shaffer D, Tsai K T, Zhang X, Xi X, Suslov A, Berger H and Forró L 2021 Nat. Phys. 17 949 [37] Cho C W, Lyu J, An L, Han T, Lo K T, Ng C Y, Hu J, Gao Y, Li G and Huang M 2022 Phys. Rev. Lett. 129 087002 [38] Das S, Paudyal H, Margine E, Agterberg D and Mazin I 2023 npj Comput. Mater. 9 66 [39] Ghosh A K, Tokunaga M and Tamegai T 2003 Phys. Rev. B 68 054507 [40] Patra C, Agarwal T, Srivastava S, Chowdhury R R, Saravanan M and Singh R P 2024 Adv. Quantum Technol. 7 2300448 [41] Samarawickrama P, McBride J, Gautam S, Fu Z, Watanabe K, Taniguchi T, Wang W, Tang J, Ackerman J and Leonard B M 2024 Nano Lett. 24 16184 [42] Wang L, He W, Huang G, Xue H, Zhang G, Mu G, Wu S, An Z, Zheng C and Chen Y 2022 ACS Nano 16 16150 [43] Ji H, Liu Y, Ji C and Wang J 2024 Acc. Mater. Res. 5 1146 [44] Devarakonda A, Inoue H, Fang S, Ozsoy-Keskinbora C, Suzuki T, Kriener M, Fu L, Kaxiras E, Bell D C and Checkelsky J G 2020 Science 370 231 [45] Zhang C, Qiao S, Xiao H and Hu T 2023 Chin. Phys. B 32 047201 [46] Wang H, Huang X, Lin J, Cui J, Chen Y, Zhu C, Liu F, Zeng Q, Zhou J and Yu P 2017 Nat. Commun. 8 394 [47] Nikolov S, Nieves P, Thompson A P, Wood M A and Tranchida J 2023 Phys. Rev. B 107 094426 [48] Chen C, Küspert J, Biało I, Mueller J, Chen K, Zou M, Mazzone D, Bucher D, Tanaka K and Ivashko O 2024 Phys. Rev. B 109 054516
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.