Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 067401    DOI: 10.1088/1674-1056/adc7f4
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Strongly tunable Ising superconductivity in van der Waals NbSe2-xTex nanosheets

Jingyuan Qu(曲静远)1,2, Guojing Hu(胡国静)2,3,†, Cuili Xiang(向翠丽)1,‡, Hui Guo(郭辉)2,3, Senhao Lv(吕森浩)2,3, Yechao Han(韩烨超)2,3, Guoyu Xian(冼国裕)2,3, Qi Qi(齐琦)2,3, Zhen Zhao(赵振)2,3, Ke Zhu(祝轲)2,3, Xiao Lin(林晓)3, Lihong Bao(鲍丽宏)2,3, Yongjin Zou(邹勇进)1, Lixian Sun(孙立贤)1, Haitao Yang(杨海涛)2,3, and Hong-Jun Gao(高鸿钧)2,3
1 Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China;
2 Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  Ising superconductivity, induced by the strong spin-orbit coupling (SOC) and inversion symmetry breaking, can lead to the in-plane upper critical field exceeding the Pauli limit and hold significant potential for advancing the study of topological superconductivity. However, the enhancement of Ising superconductivity is still a challenging problem, important for engineering Majorana fermions and exploring topological quantum computing. In this study, we investigated the superconducting properties of a series of van der Waals NbSe2xTex nanosheets. The Ising superconductivity in NbSe2xTex nanosheets can be significantly enhanced by the substitution of Te, an element with strong SOC. The fitted in-plane upper critical field of NbSe1.5Te0.5 nanosheets at absolute zero temperature reaches up to 3.2 times the Pauli limit. Angular dependence of magnetoresistance measurements reveals a distinct two-fold rotational symmetry in the superconducting transition region, highlighting the role of strong SOC. In addition, the fitting results of the Berezinskii-Kosterlitz-Thouless (BKT) transition and the two-dimensional (2D) Tinkham formula provide strong evidence for 2D superconductivity. These findings offer new perspectives for the design and modulation of the Ising superconducting state and pave the way for their potential applications in topological superconductivity and quantum technologies.
Keywords:  Ising superconductivity      NbSe2xTex      spin-orbit coupling      upper critical field      Pauli limit  
Received:  18 February 2025      Revised:  28 March 2025      Accepted manuscript online:  02 April 2025
PACS:  74.25.-q (Properties of superconductors)  
  74.25.F- (Transport properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62488201 and 1240041502), the China Postdoctoral Science Foundation (Grant No. 2024T170990), the National Key R&D Program of China (Grant No. 2022YFA1204100), the Chinese Academy of Sciences (Grant No. XDB33030100), and the Innovation Program of Quantum Science and Technology (Grant No. 2021ZD0302700).
Corresponding Authors:  Guojing Hu, Cuili Xiang     E-mail:  gjhu@iphy.ac.cn;xiangcuili@guet.edu.cn

Cite this article: 

Jingyuan Qu(曲静远), Guojing Hu(胡国静), Cuili Xiang(向翠丽), Hui Guo(郭辉), Senhao Lv(吕森浩), Yechao Han(韩烨超), Guoyu Xian(冼国裕), Qi Qi(齐琦), Zhen Zhao(赵振), Ke Zhu(祝轲), Xiao Lin(林晓), Lihong Bao(鲍丽宏), Yongjin Zou(邹勇进), Lixian Sun(孙立贤), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧) Strongly tunable Ising superconductivity in van der Waals NbSe2-xTex nanosheets 2025 Chin. Phys. B 34 067401

[1] Houzet M and Mineev V 2006 Phys. Rev. B 74 144522
[2] Cao G H and Zhu Z W 2018 Chin. Phys. B 27 107401
[3] Clogston A M 1962 Phys. Rev. Lett. 9 266
[4] Ma K, Gornicka K, Lef‘evre R, Yang Y, Rønnow H M, Jeschke H O, Klimczuk T and Von Rohr F O 2021 ACS Mater. Au 1 55
[5] Agosta C, Jin J, Coniglio W, Smith B, Cho K, Stroe I, Martin C, Tozer S, Murphy T and Palm E 2012 Phys. Rev. B 85 214514
[6] Wang X,Wang L, Liu Y, GaoW,Wu Y, Xu Z, Jin H, Zhang L, PengW and Wang Z 2023 Phys. C 606 1354223
[7] Cho C W, Ng C Y, Wong C H, Abdel-Hafiez M, Vasiliev A N, Chareev D A, Lebed A and Lortz R 2022 New J. Phys. 24 083001
[8] Zhou B T, Yuan N F Q, Jiang H L and Law K T 2016 Phys. Rev. B 93 180501
[9] Navarro-Moratalla E, Island J O, Mañas-Valero S, Pinilla-Cienfuegos E, Castellanos-Gomez A, Quereda J, Rubio-Bollinger G, Chirolli L, Silva-Guillén J A, Agraït N, Steele G A, Guinea F, van der Zant H S J and Coronado E 2016 Nat. Commun. 7 11043
[10] Lu W T, Mao Y and Sun Q F 2023 Chin. Phys. B 32 107403
[11] Zhou B T, Yuan N F, Jiang H L and Law K T 2016 Phys. Rev. B 93 180501
[12] Wickramaratne D, Khmelevskyi S, Agterberg D F and Mazin I 2020 Phys. Rev. X 10 041003
[13] Baidya P, Sahani D, Kundu H K, Kaur S, Tiwari P, Bagwe V, Jesudasan J, Narayan A, Raychaudhuri P and Bid A 2021 Phys. Rev. B 104 174510
[14] Li L, Zhang S, Hu G, Guo L, Wei T, Qin W, Xiang B, Zeng C, Zhang Z and Cui P 2022 Nano Lett. 22 6767
[15] de la Barrera S C, Sinko M R, Gopalan D P, Sivadas N, Seyler K L, Watanabe K, Taniguchi T, Tsen A W, Xu X and Xiao D 2018 Nat. Commun. 9 1427
[16] Kormányos A, Zólyomi V, Drummond N D and Burkard G 2014 Phys. Rev. X 4 011034
[17] Bhowal S and Satpathy S 2020 Phys. Rev. B 102 035409
[18] Lu J, Zheliuk O, Leermakers I, Yuan N F, Zeitler U, Law K T and Ye J 2015 Science 350 1353
[19] Sajadi E, Palomaki T, Fei Z, Zhao W, Bement P, Olsen C, Luescher S, Xu X, Folk J A, Cobden D H 2018 Science 362 922
[20] Qin M, Zhang R, Lin Z, Feng Z, Wei X, Blanco Alvarez S, Dong C, Silhanek A V, Zhu B and Yuan J 2020 J. Supercond. 33 159
[21] Zhang H, Rousuli A, Shen S, Zhang K,Wang C, Luo L,Wang J,Wu Y, Xu Y and Duan W 2020 Sci. Bull. 65 188
[22] Yu L, Mi M, Xiao H,Wang S, Sun Y, Lyu B, Bai L, Shen B, Liu M and Wang S 2024 ACS Appl. Mater. 16 59049
[23] Ma L, Shi M, Kang B, Peng K, Meng F, Zhu C, Cui J, Sun Z, Ma D and Wang H 2020 Phys. Rev. Mater. 4 124803
[24] Aikebaier F, Heikkilä T T and Lado J 2022 Phys. Rev. B 105 054506
[25] Wickramaratne D, Haim M, Khodas M and Mazin I 2021 Phys. Rev. B 104 L060501
[26] Wang C, Liu S, Jeon H, Jia Y and Cho J H 2022 Phys. Rev. Mater. 6 094801
[27] Burrard-Lucas M, Free D G, Sedlmaier S J, Wright J D, Cassidy S J, Hara Y, Corkett A J, Lancaster T, Baker P J, Blundell S J and Clarke S J 2013 Nat. Mater. 12 15
[28] Niu C, Qiu G, Wang Y, Zhang Z, Si M, Wu W and Ye P D 2020 Phys. Rev. B 101 205414
[29] Fartab D S, Guimarães J, Schmidt M and Zhang H 2023 Phys. Rev. B 108 115305
[30] Ji J Y, Hu Y, Bao T, Xu Y, Huang M, Chen J, Xue Q K and Zhang D 2024 Phys. Rev. B 110 104509
[31] Wang C, Lian B, Guo X, Mao J, Zhang Z, Zhang D, Gu B L, Xu Y and Duan W 2019 Phys. Rev. Lett. 123 126402
[32] Hu X and Ran Y 2022 Phys. Rev. B 106 125136
[33] Mkrtchyan V, Kumar R, White M, Yanxon H and Cornelius A 2017 Chem. Phys. Lett. 692 249
[34] Yan D, Wang S, Lin Y, Wang G, Zeng Y, Boubeche M, He Y, Ma J, Wang Y, Yao D X and Luo H 2020 J. Phys. Condens. Matter 32 025702
[35] Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J and Mak K F 2016 Nat. Phys. 12 139
[36] Hamill A, Heischmidt B, Sohn E, Shaffer D, Tsai K T, Zhang X, Xi X, Suslov A, Berger H and Forró L 2021 Nat. Phys. 17 949
[37] Cho C W, Lyu J, An L, Han T, Lo K T, Ng C Y, Hu J, Gao Y, Li G and Huang M 2022 Phys. Rev. Lett. 129 087002
[38] Das S, Paudyal H, Margine E, Agterberg D and Mazin I 2023 npj Comput. Mater. 9 66
[39] Ghosh A K, Tokunaga M and Tamegai T 2003 Phys. Rev. B 68 054507
[40] Patra C, Agarwal T, Srivastava S, Chowdhury R R, Saravanan M and Singh R P 2024 Adv. Quantum Technol. 7 2300448
[41] Samarawickrama P, McBride J, Gautam S, Fu Z, Watanabe K, Taniguchi T, Wang W, Tang J, Ackerman J and Leonard B M 2024 Nano Lett. 24 16184
[42] Wang L, He W, Huang G, Xue H, Zhang G, Mu G, Wu S, An Z, Zheng C and Chen Y 2022 ACS Nano 16 16150
[43] Ji H, Liu Y, Ji C and Wang J 2024 Acc. Mater. Res. 5 1146
[44] Devarakonda A, Inoue H, Fang S, Ozsoy-Keskinbora C, Suzuki T, Kriener M, Fu L, Kaxiras E, Bell D C and Checkelsky J G 2020 Science 370 231
[45] Zhang C, Qiao S, Xiao H and Hu T 2023 Chin. Phys. B 32 047201
[46] Wang H, Huang X, Lin J, Cui J, Chen Y, Zhu C, Liu F, Zeng Q, Zhou J and Yu P 2017 Nat. Commun. 8 394
[47] Nikolov S, Nieves P, Thompson A P, Wood M A and Tranchida J 2023 Phys. Rev. B 107 094426
[48] Chen C, Küspert J, Biało I, Mueller J, Chen K, Zou M, Mazzone D, Bucher D, Tanaka K and Ivashko O 2024 Phys. Rev. B 109 054516
[1] Non-quantized Zak phases, PT/APT symmetry transitions, and doubly degenerate exceptional points in a non-Hermitian spin-orbit coupled SSH model
Jun-Xing Huo(霍俊行), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2025, 34(7): 070301.
[2] Ground state of SU(3) spin-orbit coupled soft-core Bose gas
Jia Liu(刘佳), Jing Feng(冯婧), Ya-Jun Wang(王雅君), Xiao-Fei Zhang(张晓斐), and Xue-Ying Yang(杨雪滢). Chin. Phys. B, 2025, 34(6): 060301.
[3] Regulation of superconductivity in Nb thin films induced by interstitial oxygen atoms
Yuchuan Liu(刘钰川), Ming Yang(杨明), Yun Fan(范云), Zulei Xu(徐祖磊), Yu Wu(吴禹), Yixin Liu(刘以鑫), Wei Peng(彭炜), Gang Mu(牟刚), and Zhi-Rong Lin(林志荣). Chin. Phys. B, 2025, 34(4): 047401.
[4] Spectroscopic and transition properties of strontium chloride
Dong-Lan Wu(伍冬兰), Bi-Kun Liu(刘必坤), Wen-Tao Zhou(周文涛), Jia-Yun Chen(陈佳运), Zhang-Li Lai(赖章丽), Bo Liu(刘波), and Bing Yan(闫冰). Chin. Phys. B, 2025, 34(4): 043101.
[5] Three-body physics under dissipative spin-orbit coupling
Xi Zhao(赵茜). Chin. Phys. B, 2025, 34(3): 033101.
[6] Correlated physics, charge and magnetic orders in moiré kagomé systems
Zhaochen Liu(刘兆晨) and Jing Wang(王靖). Chin. Phys. B, 2025, 34(2): 027304.
[7] Effect of the mixing of s-wave and chiral p-wave pairings on electrical shot noise properties of normal metal/superconductor tunnel junctions
Yu-Chen Hu(胡雨辰) and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2024, 33(7): 077202.
[8] Effect of lattice distortion on spin admixture and quantum transport in organic devices with spin-orbit coupling
Ying Wang(王莹), Dan Li(李丹), Xinying Sun(孙新英), Huiqing Zhang(张惠晴), Han Ma(马晗), Huixin Li(李慧欣), Junfeng Ren(任俊峰), Chuankui Wang(王传奎), and Guichao Hu(胡贵超). Chin. Phys. B, 2024, 33(7): 077101.
[9] Oscillation of Dzyaloshinskii-Moriya interaction driven by weak electric fields
Runze Chen(陈润泽), Anni Cao(曹安妮), Xinran Wang(王馨苒), Yang Liu(柳洋), Hongxin Yang(杨洪新), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2024, 33(2): 027501.
[10] Spatial electron-spin splitting in single-layered semiconductor microstructure modulated by Dresselhaus spin-orbit coupling
Jia-Li Chen(陈嘉丽), Sai-Yan Chen(陈赛艳), Li Wen(温丽), Xue-Li Cao(曹雪丽), and Mao-Wang Lu(卢卯旺). Chin. Phys. B, 2024, 33(11): 118501.
[11] Bessel vortices in spin-1 Bose-Einstein condensates with Zeeman splitting and spin-orbit coupling
Huan-Bo Luo(罗焕波), Xin-Feng Zhang(张鑫锋), Runhua Li(李润华), Yongyao Li(黎永耀), and Bin Liu(刘彬). Chin. Phys. B, 2024, 33(10): 100304.
[12] Customizing topological phases in the twisted bilayer superconductors with even-parity pairings
Conghao Lin(林丛豪), Chuanshuai Huang(黄传帅), and Xiancong Lu(卢仙聪). Chin. Phys. B, 2023, 32(8): 087401.
[13] Anomalous Josephson effect between d-wave superconductors through a two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting
Bin-Hao Du(杜彬豪), Mou Yang(杨谋), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2023, 32(7): 077201.
[14] Ta thickness effect on field-free switching and spin-orbit torque efficiency in a ferromagnetically coupled Co/Ta/CoFeB trilayer
Zhongshu Feng(冯重舒), Changqiu Yu(于长秋), Haixia Huang(黄海侠), Haodong Fan(樊浩东),Mingzhang Wei(卫鸣璋), Birui Wu(吴必瑞), Menghao Jin(金蒙豪), Yanshan Zhuang(庄燕山),Ziji Shao(邵子霁), Hai Li(李海), Jiahong Wen(温嘉红), Jian Zhang(张鉴), Xuefeng Zhang(张雪峰),Ningning Wang(王宁宁), Sai Mu(穆赛), and Tiejun Zhou(周铁军). Chin. Phys. B, 2023, 32(4): 048504.
[15] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
No Suggested Reading articles found!