Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 067402    DOI: 10.1088/1674-1056/adc404
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Dimensional crossover from quasi-2D to 3D superconductivity in (Li,Fe)OHFeSe1-xSx driven by chemical pressure

Yuxin Ma(马宇欣)1,2, Munan Hao(郝木难)2, Qi Li(李琦)2, Ke Ma(马克)2, Haodong Li(李浩东)1, Duo Zhang(张铎)1, Ruijin Sun(孙瑞锦)1,†, Shifeng Jin(金士锋)2,‡, and Changchun Zhao(赵长春)1,§
1 School of Science, China University of Geosciences, Beijing (CUGB), Beijing 100083, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The interplay between dimensionality and superconductivity is a central theme in understanding the behavior of low-dimensional superconductors. In this work, we investigate the dimensional crossover from quasi-two-dimensional (quasi-2D) to three-dimensional (3D) superconductivity in (Li,Fe)OHFeSe1xSx single crystals driven by sulfur doping. Through detailed structural, electrical, and magnetic characterization, we identify a critical doping level (x=0.53) where the system transitions from quasi-2D to 3D superconducting behavior. Reduced superconducting fluctuations and non-Fermi liquid behavior near this critical point suggest the presence of competition between intralayer and interlayer pairing mechanisms. Fluctuation conductivity analysis reveals that the coherence length along the c-axis, ζc(0), and the interlayer coupling strength, Γ, increase significantly at x=0.53, marking the onset of 3D superconductivity. These findings provide new insights into the role of dimensionality and interlayer coupling in modulating superconducting properties, positioning (Li,Fe)OHFeSe1xSx as a unique platform for exploring crossover physics in iron-based superconductors.
Keywords:  iron-based superconductor      dimensional crossover      interlayer coupling  
Received:  23 January 2025      Revised:  13 March 2025      Accepted manuscript online:  24 March 2025
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  74.70.Xa (Pnictides and chalcogenides)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52272268, 52250308, and 52102338), Beijing National Laboratory for Condensed Matter Physics (Grant No. 2024BNLCMPKF016), and Fundamental Research Funding of Universities directly under the Chinese Central Government (Grant No. 2-9-2022-038).
Corresponding Authors:  Ruijin Sun, Shifeng Jin, Changchun Zhao     E-mail:  srj@cugb.edu.cn;shifengjin@iphy.ac.cn;zhaocc@cugb.edu.cn

Cite this article: 

Yuxin Ma(马宇欣), Munan Hao(郝木难), Qi Li(李琦), Ke Ma(马克), Haodong Li(李浩东), Duo Zhang(张铎), Ruijin Sun(孙瑞锦), Shifeng Jin(金士锋), and Changchun Zhao(赵长春) Dimensional crossover from quasi-2D to 3D superconductivity in (Li,Fe)OHFeSe1-xSx driven by chemical pressure 2025 Chin. Phys. B 34 067402

[1] Takei H 1984 Trans. Jpn. Inst. Met. 25 511
[2] Medvedev N 2023 Phys. Rev. B 108 144305
[3] Bohnen K P, Heid R and Renker B 2001 Phys. Rev. Lett. 86 5771
[4] Yuan Y, Wu Y, Luo H, Wang Z, Liang X, Yang Z, Wang H, Liu X and Lu Z 2018 Front. Mater. 5 72
[5] Zhang E, Xie Y M, Fang Y, Zhang J, Xu X, Zou Y C, Leng P, Gao X J, Zhang Y, Ai L, Zhang Y, Jia Z, Liu S, Yan J, Zhao W, Haigh S J, Kou X, Yang J, Huang F, Law K T, Xiu F and Dong S 2023 Nat. Phys. 19 106
[6] Yanase Y and Sigrist M 2008 J. Phys. Soc. Jpn. 77 124711
[7] De La Barrera S C, Sinko M R, Gopalan D P, Sivadas N, Seyler K L, Watanabe K, Taniguchi T, Tsen A W, Xu X, Xiao D and Hunt B M 2018 Nat. Commun. 9 1427
[8] Fujimoto S and Kawakami N 1998 Eur. Phys. J. B 5 389
[9] Liu T, Wang K, Chi R, Liu Y, Liao H and Xiang T 2023 Phys. Rev. B 108 125134
[10] Zhang J, Jia Y, Wang X, Li Z, Duan L, Li W, Zhao J, Cao L, Dai G, Deng Z, Zhang S, Feng S, Yu R, Liu Q, Hu J, Zhu J and Jin C 2019 NPG Asia Mater. 11 60
[11] Chen C, Liang A, Liu S, Nie S, Huang J, Wang M, Li Y, Pei D, Yang H, Zheng H, Zhang Y, Lu D, Hashimoto M, Barinov A, Jozwiak C, Bostwick A, Rotenberg E, Kou X, Yang L, Guo Y, Wang Z, Yuan H, Liu Z and Chen Y 2020 Matter 3 2055
[12] Zhou Z, Hou F, Huang X, Wang G, Fu Z, Liu W, Yuan G, Xi X, Xu J, Lin J and Gao L 2023 Nature 621 499
[13] Ji H, Liu Y, Ji C and Wang J 2024 Acc. Mater. Res. 5 1146
[14] Yao C and Ma Y 2021 iScience 24 102541
[15] Takahashi T, Ando C, Saito M, Miyata Y, Nakanishi Y, Pu J and Takenobu T 2021 Npj 2D Mater. Appl. 5 31
[16] Li G, Zhu S, Fan P, Cao L and Gao H J 2022 Chin. Phys. B 31 080301
[17] Lasjaunias J C, Biljaković K, Starešnić D, Monceau P, Takasaki S, Yamada J, Nakatsuji S I and Anzai H 1999 Eur. Phys. J. B 7 541
[18] Chen M, Li L, Xu M, Li W, Zheng L and Wang X 2023 Research 6 0066
[19] Schneider T 1991 Z. Für Phys. B Condens. Matter 85 187
[20] Wei W, Sun W, Sun Y, Pan Y, Jin G, Yang F, Li Y, Zhu Z, Nie Y and Shi Z 2023 Phys. Rev. B 107 L220503
[21] Meng K, Zhang X, Song B, Li B Z, Kong X, Huang S, Yang X, Jin X, Wu Y, Nie J, Cao G H and Li S 2024 Nano Lett. 24 6821
[22] Mitra S, Petrović A P, Salloum D, Gougeon P, Potel M and Zhu J X 2018 Phys. Rev. B 98 054507
[23] Guo S, Young D P, Adams P W, Wu X S, Chan J Y, McCandless G T and DiTusa J F 2011 Phys. Rev. B 83 174520
[24] Yu F, Zhu X, Wen X, Gui Z, Li Z, Han Y, Wu T, Wang Z, Xiang Z, Qiao Z, Ying J and Chen X 2022 Phys. Rev. Lett. 128 077001
[25] Stahl J, Shlaen E, Singer H and Johrendt D 2018 Dalton Trans. 47 3264
[26] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[27] Qi Y,Wang L, Gao Z,Wang D, Zhang X, Yao C,Wang C,Wang C and Ma Y 2011 Europhys. Lett. 96 17007
[28] Qi Y, Gao Z,Wang L,Wang D, Zhang X, Yao C,Wang C,Wang C and Ma Y 2012 Supercond. Sci. Technol. 25 045007
[29] Lu X F, Wang N Z, Zhang G H, Luo X G, Ma Z M, Lei B, Huang F Q and Chen X H 2014 Phys. Rev. B 89 020507
[30] Lu X F,Wang N Z,Wu H,Wu Y P, Zhao D, Zeng X Z, Luo X G,Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z and Chen X H 2015 Nat. Mater. 14 325
[31] Pachmayr U, Nitsche F, Luetkens H, Kamusella S, Brückner F, Sarkar R, Klauss H and Johrendt D 2015 Angew. Chem. Int. Ed. 54 293
[32] Dong X, Zhou H, Yang H, Yuan J, Jin K, Zhou F, Yuan D, Wei L, Li J, Wang X, Zhang G and Zhao Z 2015 J. Am. Chem. Soc. 137 66
[33] Dong X, Jin K, Yuan D, Zhou H, Yuan J, Huang Y, Hua W, Sun J, Zheng P, Hu W, Mao Y, Ma M, Zhang G, Zhou F and Zhao Z 2015 Phys. Rev. B 92 064515
[34] Guo J, Jin S,Wang G,Wang S, Zhu K, Zhou T, HeMand Chen X 2010 Phys. Rev. B 82 180520
[35] Lei H, Abeykoon M, Bozin E S, Wang K, Warren J B and Petrovic C 2011 Phys. Rev. Lett. 107 137002
[36] Croitori D, Filippova I, Kravtsov V, Günther A, Widmann S, Reuter D, Krug Von Nidda H A, Deisenhofer J, Loidl A and Tsurkan V 2020 Phys. Rev. B 101 054516
[37] Sun H, Woodruff D N, Cassidy S J, Allcroft G M, Sedlmaier S J, Thompson A L, Bingham P A, Forder S D, Cartenet S, Mary N, Ramos S, Foronda F R, Williams B H, Li X, Blundell S J and Clarke S J 2015 Inorg. Chem. 54 1958
[38] Yi X, Xing X, Qin L, Feng J, Li M, Zhang Y, Meng Y, Zhou N, Sun Y and Shi Z 2021 Phys. Rev. B 103 144501
[39] Guo Z, Sun F, Chen Y, Mao Y, Wan L, Yan X, Yang Y and Yuan W 2019 CrystEngComm 21 2994
[40] Sun J P, Shahi P, Zhou H X, Huang Y L, Chen K Y, Wang B S, Ni S L, Li N N, Zhang K, Yang W G, Uwatoko Y, Xing G, Sun J, Singh D J, Jin K, Zhou F, Zhang G M, Dong X L, Zhao Z X and Cheng J G 2018 Nat. Commun. 9 380
[41] Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M,Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G and Shibauchi T 2016 Nat. Commun. 7 12146
[42] Ossadnik M, Honerkamp C, Rice T M and Sigrist M 2008 Phys. Rev. Lett. 101 256405
[43] Yamaji Y and Imada M 2011 Phys. Rev. Lett. 106 016404
[44] Kasahara S, Yamashita T, Shi A, Kobayashi R, Shimoyama Y, Watashige T, Ishida K, Terashima T, Wolf T, Hardy F, Meingast C, Löhneysen H V, Levchenko A, Shibauchi T and Matsuda Y 2016 Nat. Commun. 7 12843
[45] Rinott S, Chashka K B, Ribak A, Rienks E D L, Taleb-Ibrahimi A, Le Fevre P, Bertran F, Randeria M and Kanigel A 2017 Sci. Adv. 3 e1602372
[46] Cai S, Zhao J, Ni N, Guo J, Yang R, Wang P, Han J, Long S, Zhou Y, Wu Q, Qiu X, Xiang T, Cava R J and Sun L 2023 Nat. Commun. 14 3116
[47] Annett J F 2006 Phys. Today 59 56
[48] Tinkham M and Emery V 1996 Phys. Today 49 74
[49] Sui Q T and Qui X G 2022 Chin. Phys. B 31 097403
[50] Aslamasov L G and Larkin A I 1968 Phys. Lett. A 26 238
[51] Vidal F, Carballeira C, Currás S R, Mosqueira J, Ramallo M V, Veira J A and Viña J 2002 Europhys. Lett. 59 754
[52] Rey R I, Carballeira C, Mosqueira J, Salem-Sugui Jr S, Alvarenga A D, Luo H Q, Lu X Y, Chen Y C and Vidal F 2013 Supercond. Sci. Technol. 26 055004
[53] Sóñora D, Carballeira C, Ponte J J, Xie T, Luo H, Li S and Mosqueira J 2017 Phys. Rev. B 96 014516
[54] Hänisch J, Huang Y, Li D, Yuan J, Jin K, Dong X, Talantsev E, Holzapfel B and Zhao Z 2020 Supercond. Sci. Technol. 33 114009
[55] Li D, Liu Y, Lu Z, Li P, Zhang Y, Ma S, Liu J, Lu J, Zhang H, Liu G, Zhou F, Dong X and Zhao Z 2022 Chin. Phys. Lett. 39 127402
[56] Uemura Y J, Le L P, Luke G M, Sternlieb B J, Wu W D, Brewer J H, Riseman T M, Seaman C L, Maple M B, Ishikawa M, Hinks D G, Jorgensen J D, Saito G and Yamochi H 1991 Phys. Rev. Lett. 66 2665
[57] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[58] Zhong X, Tse J S, Hemley R J and Liu H 2022 The Innovation 3 100226
[59] Ajay 1999 Phys. C 316 267
[60] Hosono H, Yamamoto A, Hiramatsu H and Ma Y 2018 Mater. Today 21 278
[61] Chen X, Dai P, Feng D, Xiang T and Zhang F C 2014 Natl. Sci. Rev. 1 371
[62] Stewart G R 2011 Rev. Mod. Phys. 83 1589
[63] Hong W, Zhou H, Li Z, Li Y, Stuhr U, Pokhriyal A, Ghosh H, Tao Z, Lu X, Hu J, Li S and Luo H 2023 Phys. Rev. B 107 224514
[64] Di Castro D and Balestrino G 2018 Supercond. Sci. Technol. 31 073001
[65] Lu C, Pan Z, Yang F and Wu C 2024 Phys. Rev. Lett. 132 146002
[1] Distinct behavior of electronic structure under uniaxial strain in BaFe2As2
Jiajun Li(李佳俊), Giao Ngoc Phan, Xingyu Wang(王兴玉), Fazhi Yang(杨发枝), Quanxin Hu(胡全欣), Ke Jia(贾可), Jin Zhao(赵金), Wenyao Liu(刘文尧), Renjie Zhang(张任杰), Youguo Shi(石友国), Shiliang Li(李世亮), Tian Qian(钱天), and Hong Ding(丁洪). Chin. Phys. B, 2024, 33(1): 017401.
[2] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[3] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[4] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[5] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
[6] Revealing the A1g-type strain effect on superconductivity and nematicity in FeSe thin flake
Zhaohui Cheng(程朝晖), Bin Lei(雷彬), Xigang Luo(罗习刚), Jianjun Ying(应剑俊), Zhenyu Wang(王震宇), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2021, 30(9): 097403.
[7] Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity
Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉). Chin. Phys. B, 2021, 30(8): 087306.
[8] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[9] Dispersion of neutron spin resonance mode in Ba0.67K0.33Fe2As2
Tao Xie(谢涛), Chang Liu(刘畅), Tom Fennell, Uwe Stuhr, Shi-Liang Li(李世亮), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2021, 30(12): 127402.
[10] Superconductivity at 44.4 K achieved by intercalating EMIM+ into FeSe
Jinhua Wang(王晋花), Qing Li(李庆), Wei Xie(谢威), Guanyu Chen(陈冠宇), Xiyu Zhu(祝熙宇), and Hai-Hu Wen(闻海虎). Chin. Phys. B, 2021, 30(10): 107402.
[11] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[12] NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3
Jun Luo(罗军), Chunguang Wang(王春光) Zhicheng Wang(王志成), Qi Guo(郭琦), Jie Yang(杨杰), Rui Zhou(周睿), K Matano, T Oguchi, Zhian Ren(任治安), Guanghan Cao(曹光旱), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2020, 29(6): 067402.
[13] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[14] Evidence for bosonic mode coupling in electron dynamics of LiFeAs superconductor
Cong Li(李聪), Guangyang Dai(代光阳), Yongqing Cai(蔡永青), Yang Wang(王阳), Xiancheng Wang(望贤成), Qiang Gao(高强), Guodong Liu(刘国东), Yuan Huang(黄元), Qingyan Wang(王庆艳), Fengfeng Zhang(张丰丰), Shenjin Zhang(张申金), Feng Yang(杨峰), Zhimin Wang(王志敏), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Changqing Jin(靳常青), Lin Zhao(赵林)†, and X J Zhou(周兴江)‡. Chin. Phys. B, 2020, 29(10): 107402.
[15] Antiferromagnetic interlayer coupling of (111)-oriented La0.67Sr0.33MnO3/SrRuO3 superlattices
Hui Zhang(张慧), Jing Zhang(张静), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Hai-Lin Huang(黄海林), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2019, 28(3): 037501.
No Suggested Reading articles found!