Dimensional crossover from quasi-2D to 3D superconductivity in (Li,Fe)OHFeSe1-xSx driven by chemical pressure
Yuxin Ma(马宇欣)1,2, Munan Hao(郝木难)2, Qi Li(李琦)2, Ke Ma(马克)2, Haodong Li(李浩东)1, Duo Zhang(张铎)1, Ruijin Sun(孙瑞锦)1,†, Shifeng Jin(金士锋)2,‡, and Changchun Zhao(赵长春)1,§
1 School of Science, China University of Geosciences, Beijing (CUGB), Beijing 100083, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract The interplay between dimensionality and superconductivity is a central theme in understanding the behavior of low-dimensional superconductors. In this work, we investigate the dimensional crossover from quasi-two-dimensional (quasi-2D) to three-dimensional (3D) superconductivity in (Li,Fe)OHFeSeS single crystals driven by sulfur doping. Through detailed structural, electrical, and magnetic characterization, we identify a critical doping level () where the system transitions from quasi-2D to 3D superconducting behavior. Reduced superconducting fluctuations and non-Fermi liquid behavior near this critical point suggest the presence of competition between intralayer and interlayer pairing mechanisms. Fluctuation conductivity analysis reveals that the coherence length along the -axis, , and the interlayer coupling strength, , increase significantly at , marking the onset of 3D superconductivity. These findings provide new insights into the role of dimensionality and interlayer coupling in modulating superconducting properties, positioning (Li,Fe)OHFeSeS as a unique platform for exploring crossover physics in iron-based superconductors.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52272268, 52250308, and 52102338), Beijing National Laboratory for Condensed Matter Physics (Grant No. 2024BNLCMPKF016), and Fundamental Research Funding of Universities directly under the Chinese Central Government (Grant No. 2-9-2022-038).
Yuxin Ma(马宇欣), Munan Hao(郝木难), Qi Li(李琦), Ke Ma(马克), Haodong Li(李浩东), Duo Zhang(张铎), Ruijin Sun(孙瑞锦), Shifeng Jin(金士锋), and Changchun Zhao(赵长春) Dimensional crossover from quasi-2D to 3D superconductivity in (Li,Fe)OHFeSe1-xSx driven by chemical pressure 2025 Chin. Phys. B 34 067402
[1] Takei H 1984 Trans. Jpn. Inst. Met. 25 511 [2] Medvedev N 2023 Phys. Rev. B 108 144305 [3] Bohnen K P, Heid R and Renker B 2001 Phys. Rev. Lett. 86 5771 [4] Yuan Y, Wu Y, Luo H, Wang Z, Liang X, Yang Z, Wang H, Liu X and Lu Z 2018 Front. Mater. 5 72 [5] Zhang E, Xie Y M, Fang Y, Zhang J, Xu X, Zou Y C, Leng P, Gao X J, Zhang Y, Ai L, Zhang Y, Jia Z, Liu S, Yan J, Zhao W, Haigh S J, Kou X, Yang J, Huang F, Law K T, Xiu F and Dong S 2023 Nat. Phys. 19 106 [6] Yanase Y and Sigrist M 2008 J. Phys. Soc. Jpn. 77 124711 [7] De La Barrera S C, Sinko M R, Gopalan D P, Sivadas N, Seyler K L, Watanabe K, Taniguchi T, Tsen A W, Xu X, Xiao D and Hunt B M 2018 Nat. Commun. 9 1427 [8] Fujimoto S and Kawakami N 1998 Eur. Phys. J. B 5 389 [9] Liu T, Wang K, Chi R, Liu Y, Liao H and Xiang T 2023 Phys. Rev. B 108 125134 [10] Zhang J, Jia Y, Wang X, Li Z, Duan L, Li W, Zhao J, Cao L, Dai G, Deng Z, Zhang S, Feng S, Yu R, Liu Q, Hu J, Zhu J and Jin C 2019 NPG Asia Mater. 11 60 [11] Chen C, Liang A, Liu S, Nie S, Huang J, Wang M, Li Y, Pei D, Yang H, Zheng H, Zhang Y, Lu D, Hashimoto M, Barinov A, Jozwiak C, Bostwick A, Rotenberg E, Kou X, Yang L, Guo Y, Wang Z, Yuan H, Liu Z and Chen Y 2020 Matter 3 2055 [12] Zhou Z, Hou F, Huang X, Wang G, Fu Z, Liu W, Yuan G, Xi X, Xu J, Lin J and Gao L 2023 Nature 621 499 [13] Ji H, Liu Y, Ji C and Wang J 2024 Acc. Mater. Res. 5 1146 [14] Yao C and Ma Y 2021 iScience 24 102541 [15] Takahashi T, Ando C, Saito M, Miyata Y, Nakanishi Y, Pu J and Takenobu T 2021 Npj 2D Mater. Appl. 5 31 [16] Li G, Zhu S, Fan P, Cao L and Gao H J 2022 Chin. Phys. B 31 080301 [17] Lasjaunias J C, Biljaković K, Starešnić D, Monceau P, Takasaki S, Yamada J, Nakatsuji S I and Anzai H 1999 Eur. Phys. J. B 7 541 [18] Chen M, Li L, Xu M, Li W, Zheng L and Wang X 2023 Research 6 0066 [19] Schneider T 1991 Z. Für Phys. B Condens. Matter 85 187 [20] Wei W, Sun W, Sun Y, Pan Y, Jin G, Yang F, Li Y, Zhu Z, Nie Y and Shi Z 2023 Phys. Rev. B 107 L220503 [21] Meng K, Zhang X, Song B, Li B Z, Kong X, Huang S, Yang X, Jin X, Wu Y, Nie J, Cao G H and Li S 2024 Nano Lett. 24 6821 [22] Mitra S, Petrović A P, Salloum D, Gougeon P, Potel M and Zhu J X 2018 Phys. Rev. B 98 054507 [23] Guo S, Young D P, Adams P W, Wu X S, Chan J Y, McCandless G T and DiTusa J F 2011 Phys. Rev. B 83 174520 [24] Yu F, Zhu X, Wen X, Gui Z, Li Z, Han Y, Wu T, Wang Z, Xiang Z, Qiao Z, Ying J and Chen X 2022 Phys. Rev. Lett. 128 077001 [25] Stahl J, Shlaen E, Singer H and Johrendt D 2018 Dalton Trans. 47 3264 [26] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006 [27] Qi Y,Wang L, Gao Z,Wang D, Zhang X, Yao C,Wang C,Wang C and Ma Y 2011 Europhys. Lett. 96 17007 [28] Qi Y, Gao Z,Wang L,Wang D, Zhang X, Yao C,Wang C,Wang C and Ma Y 2012 Supercond. Sci. Technol. 25 045007 [29] Lu X F, Wang N Z, Zhang G H, Luo X G, Ma Z M, Lei B, Huang F Q and Chen X H 2014 Phys. Rev. B 89 020507 [30] Lu X F,Wang N Z,Wu H,Wu Y P, Zhao D, Zeng X Z, Luo X G,Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z and Chen X H 2015 Nat. Mater. 14 325 [31] Pachmayr U, Nitsche F, Luetkens H, Kamusella S, Brückner F, Sarkar R, Klauss H and Johrendt D 2015 Angew. Chem. Int. Ed. 54 293 [32] Dong X, Zhou H, Yang H, Yuan J, Jin K, Zhou F, Yuan D, Wei L, Li J, Wang X, Zhang G and Zhao Z 2015 J. Am. Chem. Soc. 137 66 [33] Dong X, Jin K, Yuan D, Zhou H, Yuan J, Huang Y, Hua W, Sun J, Zheng P, Hu W, Mao Y, Ma M, Zhang G, Zhou F and Zhao Z 2015 Phys. Rev. B 92 064515 [34] Guo J, Jin S,Wang G,Wang S, Zhu K, Zhou T, HeMand Chen X 2010 Phys. Rev. B 82 180520 [35] Lei H, Abeykoon M, Bozin E S, Wang K, Warren J B and Petrovic C 2011 Phys. Rev. Lett. 107 137002 [36] Croitori D, Filippova I, Kravtsov V, Günther A, Widmann S, Reuter D, Krug Von Nidda H A, Deisenhofer J, Loidl A and Tsurkan V 2020 Phys. Rev. B 101 054516 [37] Sun H, Woodruff D N, Cassidy S J, Allcroft G M, Sedlmaier S J, Thompson A L, Bingham P A, Forder S D, Cartenet S, Mary N, Ramos S, Foronda F R, Williams B H, Li X, Blundell S J and Clarke S J 2015 Inorg. Chem. 54 1958 [38] Yi X, Xing X, Qin L, Feng J, Li M, Zhang Y, Meng Y, Zhou N, Sun Y and Shi Z 2021 Phys. Rev. B 103 144501 [39] Guo Z, Sun F, Chen Y, Mao Y, Wan L, Yan X, Yang Y and Yuan W 2019 CrystEngComm 21 2994 [40] Sun J P, Shahi P, Zhou H X, Huang Y L, Chen K Y, Wang B S, Ni S L, Li N N, Zhang K, Yang W G, Uwatoko Y, Xing G, Sun J, Singh D J, Jin K, Zhou F, Zhang G M, Dong X L, Zhao Z X and Cheng J G 2018 Nat. Commun. 9 380 [41] Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M,Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G and Shibauchi T 2016 Nat. Commun. 7 12146 [42] Ossadnik M, Honerkamp C, Rice T M and Sigrist M 2008 Phys. Rev. Lett. 101 256405 [43] Yamaji Y and Imada M 2011 Phys. Rev. Lett. 106 016404 [44] Kasahara S, Yamashita T, Shi A, Kobayashi R, Shimoyama Y, Watashige T, Ishida K, Terashima T, Wolf T, Hardy F, Meingast C, Löhneysen H V, Levchenko A, Shibauchi T and Matsuda Y 2016 Nat. Commun. 7 12843 [45] Rinott S, Chashka K B, Ribak A, Rienks E D L, Taleb-Ibrahimi A, Le Fevre P, Bertran F, Randeria M and Kanigel A 2017 Sci. Adv. 3 e1602372 [46] Cai S, Zhao J, Ni N, Guo J, Yang R, Wang P, Han J, Long S, Zhou Y, Wu Q, Qiu X, Xiang T, Cava R J and Sun L 2023 Nat. Commun. 14 3116 [47] Annett J F 2006 Phys. Today 59 56 [48] Tinkham M and Emery V 1996 Phys. Today 49 74 [49] Sui Q T and Qui X G 2022 Chin. Phys. B 31 097403 [50] Aslamasov L G and Larkin A I 1968 Phys. Lett. A 26 238 [51] Vidal F, Carballeira C, Currás S R, Mosqueira J, Ramallo M V, Veira J A and Viña J 2002 Europhys. Lett. 59 754 [52] Rey R I, Carballeira C, Mosqueira J, Salem-Sugui Jr S, Alvarenga A D, Luo H Q, Lu X Y, Chen Y C and Vidal F 2013 Supercond. Sci. Technol. 26 055004 [53] Sóñora D, Carballeira C, Ponte J J, Xie T, Luo H, Li S and Mosqueira J 2017 Phys. Rev. B 96 014516 [54] Hänisch J, Huang Y, Li D, Yuan J, Jin K, Dong X, Talantsev E, Holzapfel B and Zhao Z 2020 Supercond. Sci. Technol. 33 114009 [55] Li D, Liu Y, Lu Z, Li P, Zhang Y, Ma S, Liu J, Lu J, Zhang H, Liu G, Zhou F, Dong X and Zhao Z 2022 Chin. Phys. Lett. 39 127402 [56] Uemura Y J, Le L P, Luke G M, Sternlieb B J, Wu W D, Brewer J H, Riseman T M, Seaman C L, Maple M B, Ishikawa M, Hinks D G, Jorgensen J D, Saito G and Yamochi H 1991 Phys. Rev. Lett. 66 2665 [57] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17 [58] Zhong X, Tse J S, Hemley R J and Liu H 2022 The Innovation 3 100226 [59] Ajay 1999 Phys. C 316 267 [60] Hosono H, Yamamoto A, Hiramatsu H and Ma Y 2018 Mater. Today 21 278 [61] Chen X, Dai P, Feng D, Xiang T and Zhang F C 2014 Natl. Sci. Rev. 1 371 [62] Stewart G R 2011 Rev. Mod. Phys. 83 1589 [63] Hong W, Zhou H, Li Z, Li Y, Stuhr U, Pokhriyal A, Ghosh H, Tao Z, Lu X, Hu J, Li S and Luo H 2023 Phys. Rev. B 107 224514 [64] Di Castro D and Balestrino G 2018 Supercond. Sci. Technol. 31 073001 [65] Lu C, Pan Z, Yang F and Wu C 2024 Phys. Rev. Lett. 132 146002
[1]
Distinct behavior of electronic structure under uniaxial strain in BaFe2As2 Jiajun Li(李佳俊), Giao Ngoc Phan, Xingyu Wang(王兴玉), Fazhi Yang(杨发枝), Quanxin Hu(胡全欣), Ke Jia(贾可), Jin Zhao(赵金), Wenyao Liu(刘文尧), Renjie Zhang(张任杰), Youguo Shi(石友国), Shiliang Li(李世亮), Tian Qian(钱天), and Hong Ding(丁洪). Chin. Phys. B, 2024, 33(1): 017401.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.