Low leakage current β-Ga2O3 MOS capacitors with ALD deposited Al2O3 gate dielectric using ozone as precursor
Zheng-Yi Liao(廖正一)1, Pai-Wen Fang(方湃文)1, Xing Lu(卢星)1,†, Gang Wang(王钢)1, and Yan-Li Pei(裴艳丽)1,2,‡
1 State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China; 2 Foshan Institute of Sun Yat-Sen University, Foshan 528225, China
Abstract Metal-insulator-semiconductor (MOS) capacitor is a key structure for high performance MOS field transistors (MOSFETs), requiring low leakage current, high breakdown voltage, and low interface states. In this paper, -GaO MOS capacitors were fabricated with ALD deposited AlO using HO or ozone (O) as precursors. Compared with the AlO gate dielectric with HO as ALD precursor, the leakage current for the O precursor case is decreased by two orders of magnitude, while it keeps the same level at the fixed charges, interface state density, and border traps. The SIMS tests show that AlO with O as precursor contains more carbon impurities. The current transport mechanism analysis suggests that the C-H complex in AlO with O precursor serves as deep energy trap to reduce the leakage current. These results indicate that the AlO-GaO MOS capacitor using the O precursor has a low leakage current and holds potential for application in -GaO MOSFETs.
Fund: Project supported in part by the Science and Technology Development Plan Project of Jilin Province, China (Grant No. YDZJ202303CGZH022), the National Key Research and Development Program of China (Grant No. 2024YFE0205300), the National Natural Science Foundation of China (Grant No. 62471504), and the Open Fund of the State Key Laboratory of Optoelectronic Materials and Technologies (Sun Yat-Sen University) (Grant No. OEMT-2023- KF-05).
Zheng-Yi Liao(廖正一), Pai-Wen Fang(方湃文), Xing Lu(卢星), Gang Wang(王钢), and Yan-Li Pei(裴艳丽) Low leakage current β-Ga2O3 MOS capacitors with ALD deposited Al2O3 gate dielectric using ozone as precursor 2025 Chin. Phys. B 34 067304
[1] Huang Y, Yang W, Wang Q, Gao S, Chen W Z, Tang X S, Zhang H S and Liu B 2023 Chin. Phys. B 32 098502 [2] Pearton S J, Yang J, Cary P H, Ren F, Kim J, Tadjer M J and Mastro M A 2018 Appl. Phys. Rev. 5 011301 [3] Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Koukitu A, Kuramata A, Masui T and Yamakoshi S 2016 Semicond. Sci. Technol. 31 034001 [4] Zhou H, Zhang J, Zhang C, Feng Q, Zhao S, Ma P and Hao Y 2019 J. Semicond. 40 011803 [5] Higashiwaki M, Sasaki K,WongMH, Kamimura T, Krishnamurthy D, Kuramata A, Masui T and Yamakoshi S 2013 IEEE International Electron Devices Meeting, December 2-6, 2013, Washington, DC, USA, p. 28.7 [6] Kamimura T, Nakata Y, Wong M H and Higashiwaki M 2019 IEEE Electron Dev. Lett. 40 1064 [7] Lv Y J, Liu H Y, Zhou X Y, Wang Y G, Song X B, Cai Y C, Yan Q L, Wang C L, Liang S X, Zhang J C, Feng Z H, Zhou H, Cai S J and Hao Y 2020 IEEE Electron Dev. Lett. 41 537 [8] Takafumi K, Kohei S, Man H W, Daivasigamani K, Akito K, Takekazu M, Shigenobu Y and Masataka H 2014 Appl. Phys. Lett. 104 192104 [9] Jayawardena A, Ramamurthy R P, Ahyi A C, Morisette D and Dhar S 2018 Appl. Phys. Lett. 112 192108 [10] Zhou H, Alghmadi S, Si M, Qiu G and Peide D Y 2016 IEEE Electron Dev. Lett. 37 1411 [11] Hirose M, Nabatame T, Yuge K, Maeda E, Ohi A, Ikeda N, Irokawa Y, Iwai H, Yasufuku H, Kawada S, Takahashi M, Ito K, Koide Y and Kiyono H 2019 Microelectron. Eng. 216 111040 [12] Jian, Z. A., Mohanty S and Ahmadi E 2020 Appl. Phys. Lett. 116 242105 [13] Biswas D, Joishi C, Biswas J, Thakar K, Rajan S and Lodha S 2019 Appl. Phys. Lett. 114 212106 [14] Dhara S, Dheenan A, Kalarickal N K, Huang H L, Islam A E, Joishi C, Fiedler A, McGlone J F, Ringel S A, Hwang J and Rajan S 2023 Appl. Phys. Lett. 123 083504 [15] Fang P W, Liao Z Y, Su D N, Liang J, Wang, X Z and Pei Y L 2024 Semicond. Sci. Technol. 39 085003 [16] Masten H N, Phillips J D and Peterson R L 2021 Semicond. Sci. Technol. 36 04LT01 [17] Dong H, Mu W X, Hu Y, He Q M, Fu B, Xue H W, Qin Y, Jian G Z, Zhang Y, Long S B, Jia Z T, Lv H B, Liu Q, Tao X T and Liu M 2018 AIP Adv. 8 065215 [18] Yang J Y, Ma J and Yoo G 2020 Results Phys. 17 103119 [19] Zeng K and Singisetti U 2017 Appl. Phys. Lett. 111 122108 [20] Zeng K, Jia Y and Singisetti U 2016 IEEE Electron Dev. Lett. 37 906 [21] Zhang H P, Yuan L, Tang X Y, Hu J C, Sun J W, Zhang, Y M, Zhang Y M and Jia R X 2020 IEEE Trans. Electron Dev. 67 1730 [22] Yuan L, Zhang H P, Jia R X, Guo L X, Zhang Y M and Zhang Y M 2018 Appl. Surf. Sci. 433 530 [23] Kim J, Chakrabarti K, Lee J, Oh K Y and Lee C 2003 Mater. Chem. Phys 78 733 [24] Kim J B, Kwon D R, Chakrabarti K, Lee C, Oh K Y and Lee J H 2002 J. Appl. Phys. 92 6739 [25] Kubo T, Freedsman J J, Iwata Y and Egawa T 2014 Semicond. Sci. Technol. 29 045004 [26] Yang J Y, Ma J, Lee C H and Yoo G 2021 IEEE Trans. Electron Dev. 68 1011 [27] Sze S M and Ng K K 2007 Physics of semiconductor devices, 3rd edn. (Hoboken: John wiley & Sons) pp. 223-225 [28] Schroder D K 2005 Semiconductor material and device characterization, 3rd edn. (Hoboken: John Wiley & Sons) pp. 334-338 [29] Bentarzi H 2011 Transport in metal-oxide-semiconductor structures: mobile ions effects on the oxide properties (2011th) (Heidelberg: Springer Science & Business Media) pp. 23-27 [30] Sah C T and Pao H C 1966 IEEE Trans. Electron Dev. 13 393 [31] Sze S M and Ng K K 2007 Physics of semiconductor devices, 3rd edn. (Hoboken: John wiley & Sons) p. 219 [32] Masten H N, Phillips J D and Peterson R L 2019 IEEE Trans. Electron Dev. 66 2489 [33] Knebel S, Schroeder U, Zhou D Y, Mikolajick T and Krautheim G 2012 IEEE Trans. Dev. Mater. Reliab. 14 154 [34] Spahr H, Montzka S, Reinker J, Hirschberg F, Kowalsky W and Johannes H H 2013 J. Appl. Phys. 114 183714 [35] Molina-Reyes J, Uribe-Vargas H, Torres-Torres R, Mani-Gonzalez P G and Herrera-Gomez A 2017 Thin Solid Films 638 48 [36] Huang M L, Chang Y C, Chang C H, Lin T D, Kwo J, Wu T B and Hong M 2006 Appl. Phys. Lett. 89 012903 [37] Shibata T, Uenuma M, Yamada T, Yoshitsugu K, Higashi M, Nishimura K and Uraoka Y 2022 Jpn. J. Appl. Phys. 61 065502 [38] Ozaki S, Kumazaki Y, Okamoto N, Nakasha Y, Ohki T and Hara N 2023 Appl. Phys. Express 16 091001 [39] Jennison D R, Schultz P A and Sullivan J P 2004 Phys. Rev. B 69 041405 [40] Choi M, Janotti A and Van de Walle C G 2014 ACS Appl. Mater. Interfaces 6 4149
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.