Spectroscopic and transition properties of strontium chloride
Dong-Lan Wu(伍冬兰)1,†, Bi-Kun Liu(刘必坤)1, Wen-Tao Zhou(周文涛)1, Jia-Yun Chen(陈佳运)1, Zhang-Li Lai(赖章丽)1, Bo Liu(刘波)1,‡, and Bing Yan(闫冰)2
1 College of Mathematic and Physical, Jinggangshan University, Ji'an 343009, China; 2 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract The spectroscopic and transition properties of strontium chloride (SrCl) are investigated based on the theoretical approach of ab initio quantum chemistry. The calculation accuracy is improved by introducing Davidson correction, core-valence correlation (CV), the scalar relativistic and spin-orbit coupling (SOC) effects. The results show that the spectroscopic constants of X and A states are consistent with the experimental results. The spectroscopic and molecular constants of most highly excited electronic states are reported for the first time. The permanent dipole moment (PDMs) and the spin-orbit (SO) matrix element have a sudden change for the avoidance of crossing. The potential energy curves (PECs) of the 14 -S states split into 30 states. The splitting energy of A is 290.76 cm, which has a little difference from the experimental value 295.597 cm. Finally, the transition properties are given, including transition dipole moment (TDMs), Franck-Canton factor (FCFs) and radiation lifetime. It is found that the calculated radiation lifetime is in the order of 10 ns. The research will provide a theoretical reference for the feasibility of laser cooling of SrCl molecule. The dataset that supported the findings of this study is available in Science Data Bank, with the link https://www.doi.org/10.57760/sciencedb.j00113.00218.
(Rotation, vibration, and vibration-rotation constants)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11564019, 11147158, and 12464032) and the Department of Education Foundation of Jiangxi Province of China (Grant No. GJJ2401520).
Corresponding Authors:
Dong-Lan Wu, Bo Liu
E-mail: wudonglan1216@sina.com;liubo@jgsu.eu.cn
Cite this article:
Dong-Lan Wu(伍冬兰), Bi-Kun Liu(刘必坤), Wen-Tao Zhou(周文涛), Jia-Yun Chen(陈佳运), Zhang-Li Lai(赖章丽), Bo Liu(刘波), and Bing Yan(闫冰) Spectroscopic and transition properties of strontium chloride 2025 Chin. Phys. B 34 043101
[1] Micheli A, Brennen G and Zoller P 2006 Nat. Phys. 2 341 [2] Baron J, CampbellW, DeMille D, Doyle J M, Gabrielse G, Gurevich Y V, Hess P W, Hutzler N R, Kirilov E, Kozyryev I, O’Leary B R, Panda C D, Parsons M F, Petrik E S, Spaun B, Vutha A C and West A D 2014 Science 343 269 [3] Krems R V 2008 Phys. Chem. Chem. Phys. 10 4079 [4] Törring T, Doebl K and Weiler G 1985 Chem. Phys. Lett. 117 539 [5] Hansen C J, Bergemann M, Cescutti G, Francois P, Arcones A, Karakas A I, Lind K and Chiappini C 2013 Astronom. Astrophys. 551 A57 [6] Bergemann M, Hansen C J, Bautista M and Ruchti G 2012 Astronom. Astrophys. 546 A90 [7] Caffau E, Andrievsky S, Korotin S, Origlia L, Oliva E, Sanna N, Ludwig H G and Bonifacio P 2016 Astronom. Astrophys. 585 A16 [8] Li R, Zhang X M, FengW, Jiang Y F, Fei D H, Jin M X, Yan B and Xu H F 2014 Comput. Theor. Chem. 1032 20 [9] Allouche A R, Wannous G and Aubert-Frécon M A 1993 Chem. Phys. 170 11 [10] Huber K P and Herzberg G 1979 Molecular spectra & molecular structure, Constants of Diatonic Molecules, Vol. IV, Van Nostrand Reinhold, New York [11] Pandey R K, Waters K, Nigam S, He H, Pingale S S, Pandey A C and Pandey R 2014 Comput. Theor. Chem. 1043 24 [12] Brinkmann U, Schmidt V H and Telle H 1982 Chem. Phys. 64 19 [13] Schröder J O, Zeller B and Ernst W E 1988 J. Mol. Spectrosc. 127 255 [14] Ernst W E and Schröder J O 1984 J. Chem. Phys. 81 136 [15] Törring T, Ernst W E and Kändler J 1989 J. Chem. Phys. 90 4927 [16] Dagdigian P J, Cruse H W and Zare R N 1974 J. Chem. Phys. 60 2330 [17] Berg L E, Royen P and Weijnitz P 1990 Mol. Phys. 69 385 [18] Adem Z, Makhlouf S and Taher F 2016 Comput. Theor. Chem. 1093 48 [19] Werner H J, Knowles P J, Lindh R, et al. 2012 MOLPRO, version 2012.1, a package of ab initio programs [20] Werner H J, Knowles P J, Knizia G, Manby F R and Schütz M 2012 WIREs Comput. Mol. Sci. 2 242 [21] Werner H J and Knowles P J 1985 J. Chem. Phys. 82 5053 [22] Knowles P J and Werner H J 1985 Chem. Phys. Lett. 115 259 [23] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803 [24] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514 [25] Li R, Wei C L, Sun Q X, Sun E P, Xu H F and Yan B 2013 J. Phys. Chem. A 117 2373 [26] Li R, Zhang X M, Jin M X, Yan B and Xu H F 2014 Chem. Phys. Lett. 594 6 [27] Langhoff S R and Davidson E R 1974 Int. J. Quantum Chem. 8 61 [28] Peterson K A, Figgen D, Goll E, Stoll H and Dolg M 2003 J. Chem. Phys. 119 11099 [29] Wilson A K,Woon D E, Peterson K A and Dunning T H 1999 J. Chem. Phys. 110 7667 [30] Berning A, Schweizer M,Werner H J, Knowles P J and Palmieri P 2000 Mol. Phys. 98 1823 [31] Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrdinger Equation for Bound and Quasibound Levels, University of Waterloo Chemical Physics Research Report CP-663, University of Waterloo, Ontario [32] Zhu Z H 1996 Atomic and Molecular Reaction Static Mechanics, Science Press, China [33] Lima J C B D and Ornellas F R 2013 J. Mol. Spectrosc. 283 22 [34] Fu M K, Ma H T, Cao J W and Bian W S 2016 J. Chem. Phys. 144 184302 [35] Wu D L, Lin C Q,Wen Y F, Xie A D and Yan B 2018 Chin. Phys. B 27 083101 [36] Zhao S T, Yan B, Li R, Wu S and Wang Q L 2017 Chin. Phys. B 26 023105 [37] Wan M J, Jin C G, Yu Y, Huang D H and Shao J X 2017 Chin. Phys. B 26 033101 [38] Wei C L, Zhang X M, Ding D J and Yan B 2016 Chin. Phys. B 25 013102 [39] Moore C E 1971 Atomic Energy Levels, National Bureau of Standards, Washington, DC [40] Okabe H 1978 Photochemistry of Small Molecules,Wiley-Interscience, New York [41] Zou W L and Liu W J 2005 J. Comput. Chem. 26 106
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.