Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 043101    DOI: 10.1088/1674-1056/adb264
Special Issue: Featured Column — DATA PAPER
DATA PAPER Prev   Next  

Spectroscopic and transition properties of strontium chloride

Dong-Lan Wu(伍冬兰)1,†, Bi-Kun Liu(刘必坤)1, Wen-Tao Zhou(周文涛)1, Jia-Yun Chen(陈佳运)1, Zhang-Li Lai(赖章丽)1, Bo Liu(刘波)1,‡, and Bing Yan(闫冰)2
1 College of Mathematic and Physical, Jinggangshan University, Ji'an 343009, China;
2 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  The spectroscopic and transition properties of strontium chloride (SrCl) are investigated based on the theoretical approach of ab initio quantum chemistry. The calculation accuracy is improved by introducing Davidson correction, core-valence correlation (CV), the scalar relativistic and spin-orbit coupling (SOC) effects. The results show that the spectroscopic constants of X2Σ+ and A2Π states are consistent with the experimental results. The spectroscopic and molecular constants of most highly excited electronic states are reported for the first time. The permanent dipole moment (PDMs) and the spin-orbit (SO) matrix element have a sudden change for the avoidance of crossing. The potential energy curves (PECs) of the 14 Λ-S states split into 30 Ω states. The splitting energy of A2Π is 290.76 cm1, which has a little difference from the experimental value 295.597 cm1. Finally, the transition properties are given, including transition dipole moment (TDMs), Franck-Canton factor (FCFs) and radiation lifetime. It is found that the calculated radiation lifetime is in the order of 10 ns. The research will provide a theoretical reference for the feasibility of laser cooling of SrCl molecule. The dataset that supported the findings of this study is available in Science Data Bank, with the link https://www.doi.org/10.57760/sciencedb.j00113.00218.
Keywords:  SrCl      MRCI+Q      spectroscopic and transition properties      spin-orbit coupling  
Received:  20 November 2024      Revised:  13 January 2025      Accepted manuscript online:  05 February 2025
PACS:  31.15.A- (Ab initio calculations)  
  31.15.vn (Electron correlation calculations for diatomic molecules)  
  33.15.Mt (Rotation, vibration, and vibration-rotation constants)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11564019, 11147158, and 12464032) and the Department of Education Foundation of Jiangxi Province of China (Grant No. GJJ2401520).
Corresponding Authors:  Dong-Lan Wu, Bo Liu     E-mail:  wudonglan1216@sina.com;liubo@jgsu.eu.cn

Cite this article: 

Dong-Lan Wu(伍冬兰), Bi-Kun Liu(刘必坤), Wen-Tao Zhou(周文涛), Jia-Yun Chen(陈佳运), Zhang-Li Lai(赖章丽), Bo Liu(刘波), and Bing Yan(闫冰) Spectroscopic and transition properties of strontium chloride 2025 Chin. Phys. B 34 043101

[1] Micheli A, Brennen G and Zoller P 2006 Nat. Phys. 2 341
[2] Baron J, CampbellW, DeMille D, Doyle J M, Gabrielse G, Gurevich Y V, Hess P W, Hutzler N R, Kirilov E, Kozyryev I, O’Leary B R, Panda C D, Parsons M F, Petrik E S, Spaun B, Vutha A C and West A D 2014 Science 343 269
[3] Krems R V 2008 Phys. Chem. Chem. Phys. 10 4079
[4] Törring T, Doebl K and Weiler G 1985 Chem. Phys. Lett. 117 539
[5] Hansen C J, Bergemann M, Cescutti G, Francois P, Arcones A, Karakas A I, Lind K and Chiappini C 2013 Astronom. Astrophys. 551 A57
[6] Bergemann M, Hansen C J, Bautista M and Ruchti G 2012 Astronom. Astrophys. 546 A90
[7] Caffau E, Andrievsky S, Korotin S, Origlia L, Oliva E, Sanna N, Ludwig H G and Bonifacio P 2016 Astronom. Astrophys. 585 A16
[8] Li R, Zhang X M, FengW, Jiang Y F, Fei D H, Jin M X, Yan B and Xu H F 2014 Comput. Theor. Chem. 1032 20
[9] Allouche A R, Wannous G and Aubert-Frécon M A 1993 Chem. Phys. 170 11
[10] Huber K P and Herzberg G 1979 Molecular spectra & molecular structure, Constants of Diatonic Molecules, Vol. IV, Van Nostrand Reinhold, New York
[11] Pandey R K, Waters K, Nigam S, He H, Pingale S S, Pandey A C and Pandey R 2014 Comput. Theor. Chem. 1043 24
[12] Brinkmann U, Schmidt V H and Telle H 1982 Chem. Phys. 64 19
[13] Schröder J O, Zeller B and Ernst W E 1988 J. Mol. Spectrosc. 127 255
[14] Ernst W E and Schröder J O 1984 J. Chem. Phys. 81 136
[15] Törring T, Ernst W E and Kändler J 1989 J. Chem. Phys. 90 4927
[16] Dagdigian P J, Cruse H W and Zare R N 1974 J. Chem. Phys. 60 2330
[17] Berg L E, Royen P and Weijnitz P 1990 Mol. Phys. 69 385
[18] Adem Z, Makhlouf S and Taher F 2016 Comput. Theor. Chem. 1093 48
[19] Werner H J, Knowles P J, Lindh R, et al. 2012 MOLPRO, version 2012.1, a package of ab initio programs
[20] Werner H J, Knowles P J, Knizia G, Manby F R and Schütz M 2012 WIREs Comput. Mol. Sci. 2 242
[21] Werner H J and Knowles P J 1985 J. Chem. Phys. 82 5053
[22] Knowles P J and Werner H J 1985 Chem. Phys. Lett. 115 259
[23] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[24] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[25] Li R, Wei C L, Sun Q X, Sun E P, Xu H F and Yan B 2013 J. Phys. Chem. A 117 2373
[26] Li R, Zhang X M, Jin M X, Yan B and Xu H F 2014 Chem. Phys. Lett. 594 6
[27] Langhoff S R and Davidson E R 1974 Int. J. Quantum Chem. 8 61
[28] Peterson K A, Figgen D, Goll E, Stoll H and Dolg M 2003 J. Chem. Phys. 119 11099
[29] Wilson A K,Woon D E, Peterson K A and Dunning T H 1999 J. Chem. Phys. 110 7667
[30] Berning A, Schweizer M,Werner H J, Knowles P J and Palmieri P 2000 Mol. Phys. 98 1823
[31] Le Roy R J 2007 LEVEL 8.0: A Computer Program for Solving the Radial Schrdinger Equation for Bound and Quasibound Levels, University of Waterloo Chemical Physics Research Report CP-663, University of Waterloo, Ontario
[32] Zhu Z H 1996 Atomic and Molecular Reaction Static Mechanics, Science Press, China
[33] Lima J C B D and Ornellas F R 2013 J. Mol. Spectrosc. 283 22
[34] Fu M K, Ma H T, Cao J W and Bian W S 2016 J. Chem. Phys. 144 184302
[35] Wu D L, Lin C Q,Wen Y F, Xie A D and Yan B 2018 Chin. Phys. B 27 083101
[36] Zhao S T, Yan B, Li R, Wu S and Wang Q L 2017 Chin. Phys. B 26 023105
[37] Wan M J, Jin C G, Yu Y, Huang D H and Shao J X 2017 Chin. Phys. B 26 033101
[38] Wei C L, Zhang X M, Ding D J and Yan B 2016 Chin. Phys. B 25 013102
[39] Moore C E 1971 Atomic Energy Levels, National Bureau of Standards, Washington, DC
[40] Okabe H 1978 Photochemistry of Small Molecules,Wiley-Interscience, New York
[41] Zou W L and Liu W J 2005 J. Comput. Chem. 26 106
[1] Ground state of SU(3) spin-orbit coupled soft-core Bose gas
Jia Liu(刘佳), Jing Feng(冯婧), Ya-Jun Wang(王雅君), Xiao-Fei Zhang(张晓斐), and Xue-Ying Yang(杨雪滢). Chin. Phys. B, 2025, 34(6): 060301.
[2] Three-body physics under dissipative spin-orbit coupling
Xi Zhao(赵茜). Chin. Phys. B, 2025, 34(3): 033101.
[3] Correlated physics, charge and magnetic orders in moiré kagomé systems
Zhaochen Liu(刘兆晨) and Jing Wang(王靖). Chin. Phys. B, 2025, 34(2): 027304.
[4] Effect of lattice distortion on spin admixture and quantum transport in organic devices with spin-orbit coupling
Ying Wang(王莹), Dan Li(李丹), Xinying Sun(孙新英), Huiqing Zhang(张惠晴), Han Ma(马晗), Huixin Li(李慧欣), Junfeng Ren(任俊峰), Chuankui Wang(王传奎), and Guichao Hu(胡贵超). Chin. Phys. B, 2024, 33(7): 077101.
[5] Effect of the mixing of s-wave and chiral p-wave pairings on electrical shot noise properties of normal metal/superconductor tunnel junctions
Yu-Chen Hu(胡雨辰) and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2024, 33(7): 077202.
[6] Oscillation of Dzyaloshinskii-Moriya interaction driven by weak electric fields
Runze Chen(陈润泽), Anni Cao(曹安妮), Xinran Wang(王馨苒), Yang Liu(柳洋), Hongxin Yang(杨洪新), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2024, 33(2): 027501.
[7] Spatial electron-spin splitting in single-layered semiconductor microstructure modulated by Dresselhaus spin-orbit coupling
Jia-Li Chen(陈嘉丽), Sai-Yan Chen(陈赛艳), Li Wen(温丽), Xue-Li Cao(曹雪丽), and Mao-Wang Lu(卢卯旺). Chin. Phys. B, 2024, 33(11): 118501.
[8] Bessel vortices in spin-1 Bose-Einstein condensates with Zeeman splitting and spin-orbit coupling
Huan-Bo Luo(罗焕波), Xin-Feng Zhang(张鑫锋), Runhua Li(李润华), Yongyao Li(黎永耀), and Bin Liu(刘彬). Chin. Phys. B, 2024, 33(10): 100304.
[9] Customizing topological phases in the twisted bilayer superconductors with even-parity pairings
Conghao Lin(林丛豪), Chuanshuai Huang(黄传帅), and Xiancong Lu(卢仙聪). Chin. Phys. B, 2023, 32(8): 087401.
[10] Anomalous Josephson effect between d-wave superconductors through a two-dimensional electron gas with both Rashba spin-orbit coupling and Zeeman splitting
Bin-Hao Du(杜彬豪), Mou Yang(杨谋), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2023, 32(7): 077201.
[11] Ta thickness effect on field-free switching and spin-orbit torque efficiency in a ferromagnetically coupled Co/Ta/CoFeB trilayer
Zhongshu Feng(冯重舒), Changqiu Yu(于长秋), Haixia Huang(黄海侠), Haodong Fan(樊浩东),Mingzhang Wei(卫鸣璋), Birui Wu(吴必瑞), Menghao Jin(金蒙豪), Yanshan Zhuang(庄燕山),Ziji Shao(邵子霁), Hai Li(李海), Jiahong Wen(温嘉红), Jian Zhang(张鉴), Xuefeng Zhang(张雪峰),Ningning Wang(王宁宁), Sai Mu(穆赛), and Tiejun Zhou(周铁军). Chin. Phys. B, 2023, 32(4): 048504.
[12] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[13] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[14] Low-lying electronic states of osmium monoxide OsO
Wen Yan(严汶) and Wenli Zou(邹文利). Chin. Phys. B, 2023, 32(11): 113101.
[15] Phonon dichroism in proximitized graphene
Wen-Yu Shan(单文语). Chin. Phys. B, 2023, 32(10): 106301.
No Suggested Reading articles found!