Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 016401    DOI: 10.1088/1674-1056/ad9300
RAPID COMMUNICATION Prev   Next  

Interparticle-friction-induced anomalous colloid structure

Fuzhou Liu(刘福洲)1,2,†, Yu Ding(丁宇)1,2, Longfei Li(黎龙飞)1,2, Ke Cheng(程可)1,2, Fangfu Ye(叶方富)1,2,3,4,5,‡, and Mingcheng Yang(杨明成)1,2,5,§
1 Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China;
4 Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou 325000, China;
5 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Interparticle frictional interactions are ubiquitous in colloidal systems, exerting a profound influence on their structural and physical attributes. In this study, we employed Brownian dynamics simulations to explore the non-equilibrium dynamics in colloidal systems, focusing particularly on the role of tangential friction and its influence on the macroscopic physical properties of colloids. We found that the disruption of instantaneous time-reversal symmetry by tangential frictional interactions can trigger the self-assembly of colloidal systems into intricate network configurations, and these novel structures exhibit unique depletion force and rheological properties that set them apart from traditional colloidal gel systems. These findings not only help deepen our comprehension of the self-assembly phenomena in non-equilibrium colloidal systems but also offer fresh insights for the development of colloidal materials with tailored characteristics.
Keywords:  colloids      networks      self-assembly      Brownian dynamics  
Received:  11 October 2024      Revised:  04 November 2024      Accepted manuscript online:  15 November 2024
PACS:  64.70.pv (Colloids)  
  64.60.aq (Networks)  
  64.75.Yz (Self-assembly)  
  83.10.Mj (Molecular dynamics, Brownian dynamics)  
Fund: We acknowledge the support of the National Natural Science Foundation of China (Grant Nos. 12274448, 12325405, and 12174390) and the National Key R&D Program of China (Grant No. 2022YFF0503504).
Corresponding Authors:  Fuzhou Liu, Fangfu Ye, Mingcheng Yang     E-mail:  liufuzhou16@mails.ucas.edu.cn;fye@iphy.ac.cn;mcyang@iphy.ac.cn

Cite this article: 

Fuzhou Liu(刘福洲), Yu Ding(丁宇), Longfei Li(黎龙飞), Ke Cheng(程可), Fangfu Ye(叶方富), and Mingcheng Yang(杨明成) Interparticle-friction-induced anomalous colloid structure 2025 Chin. Phys. B 34 016401

[1] Rahman M A and Beltramo P 2023 Front. Phys. 11 1248706
[2] Hu M, Hsu C P and Isa L 2020 Langmuir 36 11171
[3] Li Z, Cao M, Li P, Zhao Y, Haoyu B, Wu Y and Jiang L 2019 Matter 1 661
[4] Wang H, Nobes D and Vehring R 2019 Pharm. Res. 36 43
[5] Chen W, Yu B, Zhang X, Zhang F, Zan X and Li T 2022 Journal of Colloid and Interface Science 629 173
[6] Derjaguin B V, Muller V M and Toporov Y P 1975 Journal of Colloid and Interface Science 53 314
[7] Violano G, Demelio G and Afferrante L 2018 Procedia Structural Integrity 12 58
[8] Popov V, Li Q, Lyashenko I and Pohrt R 2021 Friction 9 1688
[9] Deng Z, Smolyanitsky A, Li Q, Feng X Q and Cannara R 2012 Nat. Mater. 11 1032
[10] Egberts P, Han G, Liu X, Johnson A T C and Carpick R 2014 ACS Nano 8 5010
[11] Ye Z, Egberts P, Han G, Johnson A T C, Carpick R and Martini A 2016 ACS Nano 10 5161
[12] Gong P, Ye Z, Yuan L and Egberts P 2018 Carbon 132 749
[13] Wang Y, Ding J, Fan Z, Tian L, Li M, Lu H, Zhang Y, En M, Li J and Shan Z 2021 Nat. Mater. 20 1
[14] Sattari B, Pitkar A, Ye Z and Nalam P 2022 Advanced Materials Interfaces 9 2201249
[15] Xu C, Ye Z and Egberts P 2023 npj 2D Materials and Applications 7 1
[16] Xu C, Ye Z and Egberts P 2023 Applied Surface Science 630 157442
[17] Souza A and Tao M 2018 European Journal of Applied Mathematics 30 830
[18] Meester V and Kraft D 2016 Langmuir 32 10668
[19] Allard J, Burgers S, Rodríguez González M, Zhu Y, Feyter S and Koos E 2022 Colloids and Surfaces A: Physicochemical and Engineering Aspects 648 129224
[20] Kato A, Jiang Y, ChenW, Seto R and Li T 2023 Journal of Colloid and Interface Science 641 492
[21] Spatafora A, Lobmeyer D, Hildebrand Pires da Cunha L, Joshi K and Biswal S 2021 Soft Matter 17 1120
[22] Müller K, Osterman N, Babic D, Likos C, Dobnikar J and Nikoubashman A 2014 Langmuir 30 5088
[23] Osterman N, Poberaj I, Dobnikar J, Frenkel D, Ziherl P and Babic D 2009 Phys. Rev. Lett. 103 228301
[24] Tanaka F 2011 Polymer Physics: Applications to Molecular Association and Thermoreversible Gelation (Cambridge Univisity Press)
[25] Dickinson E 2014 Annual Review of Food Science and Technology 6 211
[26] Kumar Nair P, Vasconcelos W, Paine K and Calabria-Holley J 2021 Construction and Building Materials 291 123065
[27] Parente E, Ochoa Andrade A, Ares G, Russo F and Jimenez-Kairuz A 2015 International Journal of Cosmetic Science 37 511
[28] Li C, Obireddy S R and Lai W F 2021 Drug Delivery 28 1954
[29] Wang X, Ramírez-Hinestrosa S, Dobnikar J and Frenkel D 2019 Phys. Chem. Chem. Phys. 22 10624
[30] Langevin P 1908 Comptes rendus de l’Académie des Sciences 146 530
[31] Lemons D and Gythiel A 1997 American Journal of Physics 65 1079
[32] Allen M P and Tildesley D J 1987 Computer Simulation of Liquids (Clarendon Press)
[33] Landau L and Lifshitz E 1987 Fluid Mechanics (2nd Edn.) 6 505
[34] Han M, Fruchart M, Scheibner C, Vaikuntanathan S, de Pablo J and Vitelli V 2021 Nat. Phys. 17 1260
[35] Weeks J D, Chandler DWand Andersen H C 1971 Journal of Chemical Physics 54 5237
[36] Lees A and Edwards S 1972 J. Phys. C: Solid State Phys. 5 1921
[37] Evans D J and Morriss G P 2008 Statistical Mechanics of Nonequilibrium Liquids (Cambridge University Press)
[38] Shang X and Leimkuhler B 2017 Soft Matter 13 8565
[39] Nguyen H, Graham A, Koenig P and Gelb L 2020 Soft Matter 16 256
[40] Whittle M and Dickinson E 1997 Molecular Physics 90 739
[41] Heyes D M and Mitchell P J 1994 Journal of the Chemical Society, Faraday Transactions 90 1931
[42] Irving J H and Kirkwood J G 1950 J. Chem. Phys. 18 817
[43] Dolezal J and Jack R 2022 Phys. Rev. Research 4 033134
[44] Chandler D 1987 Introduction to Modern Statistical Mechanics (Oxford University Press)
[45] Nelson D R and Halperin B I 1979 Phys. Rev. B 19 2457
[46] Steinhardt P, Nelson D and Ronchetti M 1983 Phys. Rev. B 28 784
[47] Mbamala E and von Gruenberg H 2003 Phys. Rev. E 67 031608
[48] Ramasubramani V, Dice B D, Harper E S, SpellingsMP, Anderson J A and Glotzer S C 2020 Computer Physics Communications 254 107275
[49] Asakura S and Oosawa F 1954 J. Chem. Phys. 22 1255
[50] Asakura S and Oosawa F 1958 Journal of Polymer Science 33 183
[51] Vrij A 1976 Pure and Applied Chemistry 48 471
[52] Lang P and Liu Y 2016 Soft Matter at Aqueous Interfaces; Lecture Notes in Physics 917 (Springer)
[53] Shikata T and Pearson D S 1994 Journal of Rheology 38 601
[54] Shikata T, Niwa H S and Morishima Y 1998 Journal of Rheology 42 765
[55] Mewis J and Wagner N J 2012 Colloidal Suspension Rheology (Cambridge University Press)
[56] Clark A H and Ross-Murphy S B 1987 Biopolymers (Springer Berlin Heidelberg) p. 57
[57] Nishinari K 2009 Progress in Colloid and Polymer Science 136 (Springer) p. 87
[58] Johnson R M, Schrag J L and Ferry J D 1970 Polymer Journal 1 742
[59] Mitsuda Y, Osaki K, Schrag J L and Ferry J D 1973 Polymer Journal 4 24
[60] Osaki K 1973 Advances in Polymer Science 12 (Springer-Verlag Berlin Heidelberg) p. 1
[61] Ferry J D 1979 Macromolecular Chemistry p. 299
[62] Zaccarelli E 2007 J. Phys. Condens. Matter 19 323101
[63] Lin F J, Liao J J, Wu J C and Ai B Q 2022 Chin. Phys. B 31 036401
[64] Lou X, Liu R, Chen K, Zhou X, Podgornik R and Yang M 2022 Chin. Phys. B 31 044704
[1] Multi-protocol relay chaining for large-scale quantum key distribution networks
Yuan Cao(曹原), Xiaosong Yu(郁小松), Yongli Zhao(赵永利), Chunhui Zhang(张春辉), Xingyu Zhou(周星宇), Jie Zhang(张杰), and Qin Wang(王琴). Chin. Phys. B, 2025, 34(1): 010310.
[2] Combining machine learning algorithms with traditional methods for resolving the atomic-scale dynamic structure of monolayer MoS2 in high-resolution transmission electron microscopy
Yu Meng(蒙宇), Shuya Wang(王淑雅), Xibiao Ren(任锡标), Han Xue(薛涵), Xuejun Yue(岳学军), Chuanhong Jin(金传洪), Shanggang Lin(林上港), and Fang Lin(林芳). Chin. Phys. B, 2025, 34(1): 016802.
[3] Self-similarity of multilayer networks
Bing Wang(王冰), Huizhi Yu(于蕙芷), and Daijun Wei(魏代俊). Chin. Phys. B, 2025, 34(1): 010202.
[4] Dynamic partition of urban network considering congestion evolution based on random walk
Zhen-Tong Feng(冯振通), Lele Zhang(张乐乐), Yong-Hong Wu(吴永洪), and Mao-Bin Hu(胡茂彬). Chin. Phys. B, 2025, 34(1): 018902.
[5] CRB: A new rumor blocking algorithm in online social networks based on competitive spreading model and influence maximization
Chen Dong(董晨), Gui-Qiong Xu(徐桂琼), and Lei Meng(孟蕾). Chin. Phys. B, 2024, 33(8): 088901.
[6] Dynamic analysis of major public health emergency transmission considering the dual-layer coupling of community-resident complex networks
Peng Yang(杨鹏), Ruguo Fan(范如国), Yibo Wang(王奕博), and Yingqing Zhang(张应青). Chin. Phys. B, 2024, 33(7): 070206.
[7] Single event effects evaluation on convolution neural network in Xilinx 28 nm system on chip
Xu Zhao(赵旭), Xuecheng Du(杜雪成), Xu Xiong(熊旭), Chao Ma(马超), Weitao Yang(杨卫涛), Bo Zheng(郑波), and Chao Zhou(周超). Chin. Phys. B, 2024, 33(7): 078501.
[8] Event-based nonfragile state estimation for memristive recurrent neural networks with stochastic cyber-attacks and sensor saturations
Xiao-Guang Shao(邵晓光), Jie Zhang(张捷), and Yan-Juan Lu(鲁延娟). Chin. Phys. B, 2024, 33(7): 070203.
[9] Opinion consensus incorporating higher-order interactions in individual-collective networks
Shun Ye(叶顺), Li-Lan Tu(涂俐兰), Xian-Jia Wang(王先甲), Jia Hu(胡佳), and Yi-Chao Wang(王薏潮). Chin. Phys. B, 2024, 33(7): 070201.
[10] Mechanism analysis of regulating Turing instability and Hopf bifurcation of malware propagation in mobile wireless sensor networks
Xi-Xi Huang(黄习习), Min Xiao(肖敏), Leszek Rutkowski, Hai-Bo Bao(包海波), Xia Huang(黄霞), and Jin-De Cao(曹进德). Chin. Phys. B, 2024, 33(6): 060202.
[11] Identifying influential spreaders in complex networks based on density entropy and community structure
Zhan Su(苏湛), Lei Chen(陈磊), Jun Ai(艾均), Yu-Yu Zheng(郑雨语), and Na Bie(别娜). Chin. Phys. B, 2024, 33(5): 058901.
[12] TCAS-PINN: Physics-informed neural networks with a novel temporal causality-based adaptive sampling method
Jia Guo(郭嘉), Haifeng Wang(王海峰), Shilin Gu(古仕林), and Chenping Hou(侯臣平). Chin. Phys. B, 2024, 33(5): 050701.
[13] Prediction of collapse process and tipping points for mutualistic and competitive networks with k-core method
Dongli Duan(段东立), Feifei Bi(毕菲菲), Sifan Li(李思凡), Chengxing Wu(吴成星), Changchun Lv(吕长春), and Zhiqiang Cai(蔡志强). Chin. Phys. B, 2024, 33(5): 050201.
[14] Effects of individual heterogeneity on social contagions
Fu-Zhong Nian(年福忠) and Yu Yang(杨宇). Chin. Phys. B, 2024, 33(5): 058705.
[15] Quantum generative adversarial networks based on a readout error mitigation method with fault tolerant mechanism
Run-Sheng Zhao(赵润盛), Hong-Yang Ma(马鸿洋), Tao Cheng(程涛), Shuang Wang(王爽), and Xing-Kui Fan(范兴奎). Chin. Phys. B, 2024, 33(4): 040304.
No Suggested Reading articles found!