INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Modulation of intra- and inter-sheet interactions in short peptide self-assembly by acetonitrile in aqueous solution |
Li Deng(邓礼)1, Yurong Zhao(赵玉荣)1, Peng Zhou(周鹏)1, Hai Xu(徐海)1, Yanting Wang(王延颋)2,3 |
1. Center for Bioengineering and Biotechnology, China University of Petroleum(East China), Qingdao 266580, China;
2. CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences(CAS), Beijing 100190, China;
3. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Besides our previous experimental discovery (Zhao Y R, et al. 2015 Langmuir, 31, 12975) that acetonitrile (ACN) can tune the morphological features of nanostructures self-assembled by short peptides KⅢIK (KI4K) in aqueous solution, further experiments reported in this work demonstrate that ACN can also tune the mass of the self-assembled nanostructures. To understand the microscopic mechanism how ACN molecules interfere peptide self-assembly process, we conducted a series of molecular dynamics simulations on a monomer, a cross-β sheet structure, and a proto-fibril of KI4K in pure water, pure ACN, and ACN-water mixtures, respectively. The simulation results indicate that ACN enhances the intra-sheet interaction dominated by the hydrogen bonding (H-bonding) interactions between peptide backbones, but weakens the inter-sheet interaction dominated by the interactions between hydrophobic side chains. Through analyzing the correlations between different groups of solvent and peptides and the solvent behaviors around the proto-fibril, we have found that both the polar and nonpolar groups of ACN play significant roles in causing the opposite effects on intermolecular interactions among peptides. The weaker correlation of the polar group of ACN than water molecule with the peptide backbone enhances H-bonding interactions between peptides in the proto-fibril. The stronger correlation of the nonpolar group of ACN than water molecule with the peptide side chain leads to the accumulation of ACN molecules around the proto-fibril with their hydrophilic groups exposed to water, which in turn allows more water molecules close to the proto-fibril surface and weakens the inter-sheet interactions. The two opposite effects caused by ACN form a microscopic mechanism clearly explaining our experimental observations.
|
Received: 14 September 2016
Revised: 18 October 2016
Accepted manuscript online:
|
PACS:
|
87.10.Tf
|
(Molecular dynamics simulation)
|
|
87.14.ef
|
(Peptides)
|
|
87.15.bk
|
(Structure of aggregates)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB932804), the National Natural Science Foundation of China (Grant Nos. 91227115, 11421063, 11504431, and 21503275), the Fundamental Research Funds for Central Universities of China (Grant No. 15CX02025A), and the Application Research Foundation for Post-doctoral Scientists of Qingdao City, China (Grant No. T1404096). |
Corresponding Authors:
Hai Xu, Yanting Wang
E-mail: xuh@upc.edu.cn;wangyt@itp.ac.cn
|
Cite this article:
Li Deng(邓礼), Yurong Zhao(赵玉荣), Peng Zhou(周鹏), Hai Xu(徐海), Yanting Wang(王延颋) Modulation of intra- and inter-sheet interactions in short peptide self-assembly by acetonitrile in aqueous solution 2016 Chin. Phys. B 25 128704
|
[1] |
Ulijn R V and Smith A M 2008 Chem. Soc. Rev. 37 664
|
[2] |
Chiti F and Dobson C M 2009 Nat. Chem. Biol. 5 15
|
[3] |
Caughey B and Lansbury P T 2003 Ann. Rev. Neurosci. 26 267
|
[4] |
Dobson C M 2003 Nature 426 884
|
[5] |
Nyrkova I, Semenov A N, Aggeli A, Bell M, Boden N and McLeish T C 2000 Eur. Phys. J. B 17 499
|
[6] |
Nelson R, Sawaya M R, Balbirnie M, Madsen A O, Riekel C, Grothe R and Eisenberg D 2005 Nature 435 773
|
[7] |
Sawaya M R, Sambashivan S, Nelson R, Ivanova M I, Sievers S A, Apostol M I, Thompson M J, Balbirnie M, Wiltzius J J W, McFarlane H T, Madsen A O, Riekel C and Eisenberg D 2007 Nature 447 453
|
[8] |
Ghadiri M R, Granja J R, Milligan R A, McRee D E and Khazanovich N 1993 Nature 366 324
|
[9] |
Deechongkit S, Powers E T, You S L and Kelly J W 2005 J. Am. Chem. Soc. 127 8562
|
[10] |
Scanlon S and Aggeli A 2008 Nano Today 3 22
|
[11] |
Adamcik J, Castelletto V, Bolisetty S, Hamley I W and Mezzenga R 2011 Angew. Chem. Int. Ed. 50 5495
|
[12] |
Baldwin R L and Rose G D 1999 Trends Biochem. Sci. 24 26
|
[13] |
Baldwin R L and Rose G D 1999 Trends Biochem. Sci. 24 77
|
[14] |
Nyrkova I, Semenov A N, Aggeli A and Boden N 2000 Eur. Phys. J. B 17 481
|
[15] |
Aggeli A, Nyrkova I A, Bell M, Harding R, Carrick L, McLeish T C B, Semenov A N and Boden N 2001 Proc. Natl. Acad. Sci. USA 98 11857
|
[16] |
Lu K, Jacob J, Thiyagarajan P, Conticello V P and Lynn D G 2003 J. Am. Chem. Soc. 125 6391
|
[17] |
Lamm M S, Rajagopal K, Schneider J P and Pochan D J 2005 J. Am. Chem. Soc. 127 16692
|
[18] |
Pashuck E T and Stupp S I 2010 J. Am. Chem. Soc. 132 8819
|
[19] |
Ziserman L, Lee H Y, Raghavan S R, Mor A and Danino D 2011 J. Am. Chem. Soc. 133 2511
|
[20] |
Childers W S, Anthony N R, Mehta A K, Berland K M and Lynn D G 2012 Langmuir 28 6386
|
[21] |
Whitesides G M and Grzybowski B 2002 Science 295 2418
|
[22] |
Knowles T P, Fitzpatrick A W, Meehan S, Mott H R, Vendruscolo M, Dobson C M and Welland M E 2007 Science 318 1900
|
[23] |
Bowerman C J, Ryan D M, Nissan D A and Nilsson B L 2009 Mol. Biosyst. 5 1058
|
[24] |
Xu H, Wang J, Han S Y, Wang J Q, Yu D Y, Zhang H Y, Xia D H, Zhao X B, Waigh T A and Lu J R 2009 Langmuir 25 4115
|
[25] |
Lee N R, Bowerman C J and Nilsson B L 2013 Biomacromolecules 14 3267
|
[26] |
Mehta A K, Lu K, Childers W S, Liang Y, Dublin S N, Dong J J, Snyder J P, Pingali S V, Thiyagarajan P and Lynn D G 2008 J. Am. Chem. Soc. 130 9829
|
[27] |
Adamcik J and Mezzenga R 2011 Soft Matter 7 5437
|
[28] |
Jordens S, Adamcik J, Amar-Yuli I and Mezzenga R 2011 Biomacromolecules 12 187
|
[29] |
Castelletto V, Hamley I W, Harris P J F, Olsson U and Spencer N 2009 J. Phys. Chem. B 113 9978
|
[30] |
Hua L, Zhou R H, Thirumalai D and Berne B J 2008 Proc. Natl. Acad. Sci. USA 105 16928
|
[31] |
Hwang S, Shao Q, Williams H, Hilty C and Gao Y Q 2011 J. Phys. Chem. B 115 6653
|
[32] |
Shao Q, Fan Y B, Yang L J and Gao Y Q 2012 J. Chem. Phys. 136 115101
|
[33] |
Candotti M, Esteban-Martin S, Salvatella X and Orozco M 2013 Proc. Natl. Acad. Sci. USA 110 5933
|
[34] |
Xu W X, Ping J, Li W F and Mu Y G 2009 J. Chem. Phys. 130
|
[35] |
Emamyari S and Fazli H 2014 Eur. Biophys. J. Biophy 43 143
|
[36] |
Wei G H and Shea J E 2006 Biophys. J. 91 1638
|
[37] |
Yang C, Li J Y, Li Y and Zhu X L 2009 J. Mol. Structure-theochem 895 1
|
[38] |
Li W F, Qin M, Tie Z X and Wang W 2011 Phys. Rev. E 84 041933
|
[39] |
Klimov D K, Straub J E and Thirumalai D 2004 Proc. Natl. Acad. Sci. U.S.A. 101 14760
|
[40] |
Rissanou A N, Georgilis E, Kasotaids E, Mitraki A and Harmandaris V 2013 J. Phys. Chem. B 117 3962
|
[41] |
Zhao Y R, Deng L, Wang J Q, Xu H and Lu J R 2015 Langmuir 31 12975
|
[42] |
Buchanan L E, Dunkelberger E B, Tran H Q, Cheng P N, Chiu C C, Cao P, Raleigh D P, de Pablo J J, Nowick J S and Zanni M T 2013 Proc. Natl. Acad. Sci. USA 110 19285
|
[43] |
Krone M G, Hua L, Soto P, Zhou R H, Berne B J and Shea J E 2008 J. Am. Chem. Soc. 130 11066
|
[44] |
Jose J C, Khatua P, Bansal N, Sengupta N and Bandyopadhyay S 2014 J. Phys. Chem. B 118 11591
|
[45] |
Fitzpatrick A W P, Debelouchina G T, Bayro M J, Clare D K, Caporini M A, Bajaj V S, Jaroniec C P, Wang L C, Ladizhansky V, Muller S A, MacPhee C E, Waudby C A, Mott H R, De Simone A, Knowles T P J, Saibil H R, Vendruscolo M, Orlova E V, Griffin R G and Dobson C M 2013 Proc. Natl. Acad. Sci. USA 110 5468
|
[46] |
Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J C 2005 J. Comput. Chem. 26 1701
|
[47] |
Jorgensen W L, Maxwell D S and Titado-Rives J 1996 J. Am. Chem. Soc. 118 11225
|
[48] |
Jorgensen W L and Tirado-Rives J 2005 Proc. Natl. Acad. Sci. USA 102 6665
|
[49] |
Caleman C, van Maaren P J, Hong M Y, Hub J S, Costa L T and van der Spoel D 2012 J. Chem. Theory Comput. 8 61
|
[50] |
Jorgensen W L, William L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926
|
[51] |
Deng L, Zhou P, Zhao Y R, Wang Y T and Xu H 2014 J. Phys. Chem. B 118 12501
|
[52] |
Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089
|
[53] |
Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577
|
[54] |
Ravikumar K M and Hwang W 2011 J. Am. Chem. Soc. 133 11766
|
[55] |
Patel A J, Varilly P, Jamadagni S N, Acharya H, Garde S and Chandler D 2011 Proc. Natl. Acad. Sci. USA 108 17678
|
[56] |
Patel A J, Varilly P, Jamadagni S N, Hagan M F, Chandler D and Garde S 2012 J. Phys. Chem. B 116 2498
|
[57] |
Shao Q 2014 J. Phys. Chem. B 118 6175
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|