| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
A design for an antiferromagnetic material based on self-assembly for information storage |
| Si-Yan Gao(高思妍)1, Yi-Feng Zheng(郑益峰)2, Shu-Qiang He(何述强)3, Haiping Fang(方海平)3,†, and Yue-Yu Zhang(张越宇)2,‡ |
1 School of Physics and School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; 2 Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; 3 School of Physics, East China University of Science and Technology, Shanghai 200237, China |
|
|
|
|
Abstract Antiferromagnetic (AFM) spintronics have sparked extensive research interest in the field of information storage due to the considerable advantages offered by antiferromagnets, including non-volatile data storage, higher storage density, and accelerating data processing. However, the manipulation and detection of internal AFM order in antiferromagnets hinders their applications in spintronic devices. Here, we proposed a design idea for an AFM material that is self-assembled from one-dimensional (1D) ferromagnetic (FM) chains. To validate this idea, we screened a two-dimensional (2D) self-assembled CrBr$_{2}$ antiferromagnet of an AFM semiconductor from a large amount of data. This 2D CrBr$_{2}$ antiferromagnet is composed of 1D FM CrBr$_{2}$ chains that are arranged in a staggered and parallel configuration. In this type of antiferromagnet, the write-data operation of information is achieved in 1D FM chains, followed by a self-assembly process driving the assembly of 1D FM chains into an antiferromagnet. These constituent 1D FM chains become decoupled by external perturbations, such as heat, pressure, strain, etc., thereby realizing the read-data operation of information. We anticipate that this antiferromagnet, composed of 1D FM chains, can be realized not only in the 1D to 2D system, but also is expected to expand to 2D to three-dimensional (3D) system, and even 1D to 3D system.
|
Received: 07 January 2025
Revised: 18 March 2025
Accepted manuscript online: 31 March 2025
|
|
PACS:
|
75.50.Ee
|
(Antiferromagnetics)
|
| |
81.16.Dn
|
(Self-assembly)
|
| |
72.80.Ga
|
(Transition-metal compounds)
|
| |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
| |
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12435001, 12304006, and 12404265), the Natural Science Foundation of Shanghai, China (Grant No. 23JC1401400), the Fundamental Research Funds for the Central Universities of East China University, the Natural Science Foundation of WIUCAS (Grant No. WIUCASQD2023004), and the Natural Science Foundation of Wenzhou (Grant No. L2023005). |
Corresponding Authors:
Haiping Fang, Yue-Yu Zhang
E-mail: fanghaiping@sinap.ac.cn;zhangyy@wiucas.ac.cn
|
Cite this article:
Si-Yan Gao(高思妍), Yi-Feng Zheng(郑益峰), Shu-Qiang He(何述强), Haiping Fang(方海平), and Yue-Yu Zhang(张越宇) A design for an antiferromagnetic material based on self-assembly for information storage 2025 Chin. Phys. B 34 067504
|
[1] Marti X, Fina I, Frontera C, Liu J, Wadley P, He Q, Paull R J, Clarkson J D, Kudrnovský J, Turek I, Kuneš J, Yi D, Chu J H, Nelson C T, You L, Arenholz E, Salahuddin S, Fontcuberta J, Jungwirth T and Ramesh R 2014 Nat. Mater. 13 367 [2] Chen X, Shi S, Shi G, Fan X, Song C, Zhou X, Bai H, Liao L, Zhou Y, Zhang H, Li A, Chen Y, Han X, Jiang S, Zhu Z, Wu H, Wang X, Xue D, Yang H and Pan F 2021 Nat. Mater. 20 800 [3] Dal Din A, Amin O J,Wadley P and Edmonds K W 2024 Npj Spintronics 2 25 [4] Néel L 1971 Science 174 985 [5] Jungwirth T, Marti X,Wadley P andWunderlich J 2016 Nat. Nanotechnol. 11 231 [6] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005 [7] Šmejkal L, Mokrousov Y, Yan B and MacDonald A H 2018 Nat. Phys. 14 242 [8] Tokura Y and Kanazawa N 2020 Chem. Rev. 121 2857 [9] Huang K, Shao D F and Tsymbal E Y 2022 Nano Lett. 22 3349 [10] Nakatsuji S, Kiyohara N and Higo T 2015 Nature 527 212 [11] mejkal L, MacDonald A H, Sinova J, Nakatsuji S and Jungwirth T 2022 Nat. Rev. Mater. 7 482 [12] Yu X Z, Koshibae W, Tokunaga Y, Shibata K, Taguchi Y, Nagaosa N and Tokura Y 2018 Nature 564 95 [13] Han M G, Garlow J A, Liu Y, Zhang H, Li J, DiMarzio D, Knight M W, Petrovic C, Jariwala D and Zhu Y 2019 Nano Lett. 19 7859 [14] Augustin M, Jenkins S, Evans R F L, Novoselov K S and Santos E J G 2021 Nat. Commun. 12 185 [15] Cheong S W and Huang F T 2024 Npj Quantum Mater. 9 13 [16] Fedchenko O, Minár J, Akashdeep A, D’Souza SW, Vasilyev D, Tkach O, Odenbreit L, Nguyen Q, Kutnyakhov D, Wind N, Wenthaus L, Scholz M, Rossnagel K, Hoesch M, Aeschlimann M, Stadtmüller B, Kläui M, Schönhense G, Jungwirth T, Hellenes A B, Jakob G, Šmejkal L, Sinova J and Elmers H J 2024 Sci. Adv. 10 eadj4883 [17] Yan H, Feng Z, Qin P, Zhou X, Guo H,Wang X, Chen H, Zhang X,Wu H, Jiang C and Liu Z 2020 Adv. Mater. 32 1905603 [18] Zelezný J, Wadley P, Olejník K, Hoffmann A and Ohno H 2018 Nat. Phys. 14 220 [19] Han J, Cheng R, Liu L, Ohno H and Fukami S 2023 Nat. Mater. 22 684 [20] Ren Q, Lai K, Chen J, Yu X and Dai J 2023 Chin. Phys. B 32 027201 [21] Gong S J, Gong C, Sun Y Y, TongWY, Duan C G, Chu J H and Zhang X 2018 Proc. Natl. Acad. Sci. USA 115 8511 [22] Lv H, Niu Y, Wu X and Yang J 2021 Nano Lett. 21 7050 [23] Wang Y, Xu X, Zhao X, Ji W, Cao Q, Li S and Li Y 2022 Npj Comput. Mater. 8 218 [24] Šmejkal L, González-Hernández R, Jungwirth T and Sinova J 2020 Sci. Adv. 6 eaaz8809 [25] Šmejkal L, Sinova J and Jungwirth T 2022 Phys. Rev. X 12 031042 [26] Šmejkal L, Sinova J and Jungwirth T 2022 Phys. Rev. X 12 040501 [27] Krempaský J, Šmejkal L, D’souza S W, Hajlaoui M, Springholz G, Uhlírová K, Alarab F, Constantinou P C, Strocov V, Usanov D, Pudelko W R, González-Hernández R, Birk Hellenes A, Jansa Z, Reichlová H, Šobán Z, Gonzalez Betancourt R D, Wadley P, Sinova J, Kriegner D, Minár J, Dil J H and Jungwirth T 2024 Nature 626 517 [28] Li X and Yang J 2016 Natl. Sci. Rev. 3 365 [29] Rimmler B H, Pal B and Parkin S S P 2024 Nat. Rev. Mater. 10 109 [30] Takagi R, Hirakida R, Settai Y, Oiwa R, Takagi H, Kitaori A, Yamauchi K, Inoue H, Yamaura J I, Nishio-Hamane D, Itoh S, Aji S, Saito H, Nakajima T, Nomoto T, Arita R and Seki S 2025 Nat. Mater. 24 63 [31] Zhang Y Y, Gao W, Chen S, et al. 2015 Comput. Mater. Sci. 98 51 [32] Storn R and Price K 1997 J. Global Optim. 11 341 [33] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [34] Blöchl P E 1994 Phys. Rev. B 50 17953 [35] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [36] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [37] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 [38] Tkatchenko A and Scheffler M 2009 Phys. Rev. Lett. 102 073005 [39] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 [40] Togo A and Tanaka I 2015 Scr. Mater. 108 1 [41] Kühne T D, Iannuzzi M, Del Ben M, et al. 2020 J. Chem. Phys. 152 194103 [42] Kan M, Adhikari S and Sun Q 2014 Phys. Chem. Chem. Phys. 61 4990 [43] Kan M, Zhou J, Sun Q, et al. 2013 J. Phys. Chem. Lett. 4 3382 [44] Lan M, Xiang G, Nie Y, et al. 2016 RSC Adv. 6 31758 [45] Liu L, Ren X, Xie J, et al. 2019 Appl. Surf. Sci. 480 300 [46] Liu L and Zhang X https://github.com/golddoushi/mcsolver [47] Xiang R, Inoue T, Zheng Y, Kumamoto A, Qian Y, Sato Y, Liu M, Tang D, Gokhale D, Guo J, Hisama K, Yotsumoto S, Ogamoto T, Arai H, Kobayashi Y, Zhang H, Hou B, Anisimov A, Maruyama M, Miyata Y, Okada S, Chiashi S, Li Y, Kong J, Kauppinen E I, Ikuhara Y, Suenaga K and Maruyama S 2020 Science 367 537 [48] Yakobson B I and Gogotsi Y 2020 Science 367 506 [49] Xiang H, Lee C, Koo H J, Gong X and Whangbo M H 2013 Dalton Trans. 42 823 [50] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McguireMA, Cobden D H, YaoW, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|