Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 038103    DOI: 10.1088/1674-1056/26/3/038103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Controllable preparation of tungsten/tungsten carbide nanowires or nanodots in nanostructured carbon with hollow macroporous core/mesoporous shell

Xiao-Na Ren(任晓娜), Min Xia(夏敏), Qing-Zhi Yan(燕青芝), Chang-Chun Ge(葛昌纯)
Institute of Nuclear Energy and New Energy System Materials, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract  

Large scale tungsten nanowires and tungsten nanodots are prepared in a controllable way. The preparation is based on mechanisms of chemical vapor transportation and phase transformation during the reduction of ammonium metatungstate (AMT) in H2. The AMT is first encapsulated into the hollow core of nanostructured carbon with hollow macroporous core/mesoporous shell (NC-HMC/MS) and forms nanorods, which are the precursors of both tungsten nanowires and tungsten nanodots. Just by controlling H2 flow rate and heating rate in the reduction process, the AMT nanorods could turn into nanowires (under low rate condition) or nanodots (under high rate condition). Besides, via heat treatment at 1200℃, the as-obtained nano-sized tungsten could convert into W2C nanorods or WC nanodots respectively. Furthermore, the diameter of the as-obtained tungsten or tungsten carbide is confined within 50 nm by the NC-HMC/MS, and no agglomeration appears in the obtained nanomaterials.

Keywords:  tungsten nanowires      tungsten nanodots      mesoporous carbon      self-assembly  
Received:  04 November 2016      Revised:  22 December 2016      Accepted manuscript online: 
PACS:  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  81.07.Gf (Nanowires)  
  81.10.St (Growth in controlled gaseous atmospheres)  
  81.16.Dn (Self-assembly)  
Corresponding Authors:  Min Xia, Chang-Chun Ge     E-mail:  xmdsg@ustb.edu.cn;ccge@mater.ustb.edu.cn

Cite this article: 

Xiao-Na Ren(任晓娜), Min Xia(夏敏), Qing-Zhi Yan(燕青芝), Chang-Chun Ge(葛昌纯) Controllable preparation of tungsten/tungsten carbide nanowires or nanodots in nanostructured carbon with hollow macroporous core/mesoporous shell 2017 Chin. Phys. B 26 038103

[1] Hou L Z, Wang S L, Chen G L, He Y H and Xie Y 2013 Trans. Nonferrous Met. Soc. China 23 2323
[2] Huang H, Wu Y Q, Wang S L, He Y H, Zou J, Huang B Y and Liu C T 2009 Mater. Sci. Eng. A 523 193
[3] Levitt A P (US Patent) 5 440 995 [1995-08-15]
[4] Lee Y H, Choi C H, Jang Y T, Kim E K, Ju B K, Min N K and Ahn J H 2002 Appl. Phys. Lett. 81 745
[5] Gu Z J, Li H Q, Zhai T Y, Yang W S, Xia Y Y, Ma Y and Yao J N 2007 J. Solid State Chem. 180 98
[6] Fenster C, Smith A J, Abts A, Milenkovic S and Hassel A W 2008 Electrochem. Commun. 10 1125
[7] Choi J and Kim J 2009 Sens. Actuators B Chem. 136 92
[8] Choi C H, Jang Y T, Ju B K, Lee Y H, Oh M H, Ahn J H and Min N K 2002 SID Symp. Dig. Tech. Pap. 33 369
[9] Lee Y H, Kim D H, Shin K S, Choi C H, Jang Y T and Ju B K 2003 Appl. Phys. Lett. 82 3535
[10] Milenkovic S and Hassel A W 2009 Phys. Status Solidi A 206 455
[11] Li Y D, Li X L, Deng Z X, Zhou B C, Fan S S, Wang J W and Sun X M 2002 Angew. Chem. Int. Ed. 41 333
[12] Liu Z Q, Mitsuishi K and Furuya K J 2004 Appl. Phys. 96 619
[13] Wang C, He Y H, Wang S L, Zhang Q and Liu X L 2012 J. Cryst. Growth 338 214
[14] Bien D C, Saman R M, Badaruddin S A M and Lee H W 2011 Nanoscale Res. Lett. 6 1
[15] Pei Y, Nishijima M, Fukushima T, Tanaka T and Koyanagi M 2008 Appl. Phys. Lett. 93 113115
[16] Choi S, Yang H, Chang M, Baek S, Hwang H, Jeon S, Kim J and Kim C 2005 Appl. Phys. Lett. 86 251901
[17] Dai W L, Ding J, Zhu Q, Gao R and Yang X 2016 Catal. 28 1
[18] Levy R B and Boudart M 1973 Science 181 547
[19] Meng H and Shen P K 2005 J. Phys. Chem. B 109 22705
[20] Moreno-Castilla C, Alvarez-Merino M A, Carrasco-Marín F and Fierro J L G 2001 Langmuir 17 1752
[21] Rosenbaum M, Zhao F, Schröder U and Scholz F 2006 Angew. Chem. Int. Ed. 45 6658
[22] Li N, Yan Y, Xia B Y, Wang J Y and Wang X 2014 Biosens. Bioelectron. 54 521
[23] Yoon S B, Sohn K, Kim J Y, Shin C H, Yu J S and Hyeon T 2002 Adv. Mater. 14 19
[24] Ni Y B, Shao M W, Tong Y H, Qian G X and Wei X W 2005 J. Solid State Chem. 178 908
[25] Dai H J, Wong E W, Lu Y Z, Fan S S and Lieber C M 1995 Nature 375 769
[26] Liang C D, Li Z J and Dai S 2008 Angew. Chem. Int. Ed. 47 3696
[27] Mu Y Y, Liang H P, Hu J S, Jiang L and Wan L J 2005 J. Phys. Chem. B 109 22212
[28] Wang Q, Yan J, Wang Y B, Ning G Q, Fan Z J, Wei T, Cheng J, Zhang M L and Jing X Y 2013 Carbon 52 209
[29] Prodana M, Voiculet A, Garea S, Radu M, Iovu H, Demetrescu I and Dinischiotu A 2014 Cent. Eur. J. Chem. 12 1008
[30] Jha A, Banerjee D and Chattopadhyay K K 2011 Carbon. 49 1272
[31] Li Q Q, Li W Q, Feng Q, Wang P, Mao M M, Liu J B, Zhou L M, Wang H T and Yao H M 2014 Carbon 80 793
[32] Tan K H, Ahmad R and Johan M R 2013 Mater. Chem. Phys. 139 66
[33] Dinesh J, Eswaramoorthy M and Rao C N R 2007 J. Phys. Chem. C 111 510
[34] Xiong Y J, Xie Y, Li X X and Li Z Q 2004 Carbon 42 1447
[35] Yusof Y and Johan M R 2014 Cryst. Eng. Comm. 16 8570
[36] Tsang S C, Chen Y K, Harris P J and Green M L 1994 Nature 372 159
[37] Ajayan P M and Lijima S 1993 Nature 361 333
[38] Sarin K 1975 J. Mater. Sci. 10 593
[39] Venables D S and Brown M E 1996 Thermochim. Acta. 285 361
[40] Xu F S, Tse S D, Al-Sharab J F and Kear B H 2006 Appl. Phys. Lett. 88 243115
[1] Phoretic self-assembly of active colloidal molecules
Lijie Lei(雷李杰), Shuo Wang(王硕), Xinyuan Zhang(张昕源), Wenjie Lai(赖文杰), Jinyu Wu(吴晋宇), and Yongxiang Gao(高永祥). Chin. Phys. B, 2021, 30(5): 056112.
[2] Scalable preparation of water-soluble ink of few-layered WSe2 nanosheets for large-area electronics
Guoyu Xian(冼国裕), Jianshuo Zhang(张建烁), Li Liu(刘丽), Jun Zhou(周俊), Hongtao Liu(刘洪涛), Lihong Bao(鲍丽宏), Chengmin Shen(申承民), Yongfeng Li(李永峰), Zhihui Qin(秦志辉), Haitao Yang(杨海涛). Chin. Phys. B, 2020, 29(6): 066802.
[3] Adsorption behavior of triphenylene on Ru(0001) investigated by scanning tunneling microscopy
Li-Wei Jing(井立威), Jun-Jie Song(宋俊杰), Yu-Xi Zhang(张羽溪), Qiao-Yue Chen(陈乔悦), Kai-Kai Huang(黄凯凯), Han-Jie Zhang(张寒洁), Pi-Mo He(何丕模). Chin. Phys. B, 2019, 28(7): 076801.
[4] Full filling of mesoporous carbon nanotubes by aqueous solution at room temperature
Xiao-Na Ren(任晓娜), Min Xia(夏敏), Qing-Zhi Yan(燕青芝), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2019, 28(3): 036801.
[5] Phosphine-free synthesis of FeTe2 nanoparticles and self-assembly into tree-like nanoarchitectures
Hongyu Wang(王红宇), Min Wu(武敏), Yixuan Wang(王艺璇), Hao Wang(王浩), Xiaoli Huang(黄晓丽), Xinyi Yang(杨新一). Chin. Phys. B, 2019, 28(10): 106401.
[6] Effect of substrate type on Ni self-assembly process
Xuzhao Chai(柴旭朝), Boyang Qu(瞿博阳), Yuechao Jiao(焦岳超), Ping Liu(刘萍), Yanxia Ma(马彦霞), Fengge Wang(王凤歌), Xiaoquan Li(李晓荃), Xiangqian Fang(方向前), Ping Han(韩平), Rong Zhang(张荣). Chin. Phys. B, 2019, 28(1): 016102.
[7] Phase transition of a diblock copolymer and homopolymer hybrid system induced by different properties of nanorods
Xiao-bo Geng(耿晓波), Jun-xing Pan(潘俊星), Jin-jun Zhang(张进军), Min-na Sun(孙敏娜), Jian-yong Cen(岑建勇). Chin. Phys. B, 2018, 27(5): 058102.
[8] Hydrophobic nanochannel self-assembled by amphipathic Janus particles confined in aqueous nano-space
Gang Fang(方钢), Nan Sheng(盛楠), Tan Jin(金坦), Yousheng Xu(许友生), Hai Sun(孙海), Jun Yao(姚军), Wei Zhuang(庄巍), Haiping Fang(方海平). Chin. Phys. B, 2018, 27(3): 030505.
[9] Enhanced performance of a solar cell based on a layer-by-layer self-assembled luminescence down-shifting layer of core-shell quantum dots
Ni Liu(刘妮), Shu-Xin Li(李淑鑫), Ying-Chun Ye(叶迎春), Yan-Li Yao(姚延立). Chin. Phys. B, 2018, 27(12): 127303.
[10] Large scale and controllable preparation of W2C nanorods or WC nanodots with peroxidase-like catalytic activity
Xiao-Na Ren(任晓娜), Min Xia(夏敏), Qing-Zhi Yan(燕青芝), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2017, 26(4): 048103.
[11] Improving self-assembly quality of colloidal crystal guided by statistical design of experiments
Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Haiming Zhang(张海明), Ling Liu(刘玲), Jichao Li(李继超), Dabao Yang(杨大宝). Chin. Phys. B, 2017, 26(3): 038105.
[12] Anisotropic formation mechanism and nanomechanics for the self-assembly process of cross-β peptides
Li Deng(邓礼), Yurong Zhao(赵玉荣), Peng Zhou(周鹏), Hai Xu(徐海), Yanting Wang(王延颋). Chin. Phys. B, 2017, 26(12): 128701.
[13] Modulation of intra- and inter-sheet interactions in short peptide self-assembly by acetonitrile in aqueous solution
Li Deng(邓礼), Yurong Zhao(赵玉荣), Peng Zhou(周鹏), Hai Xu(徐海), Yanting Wang(王延颋). Chin. Phys. B, 2016, 25(12): 128704.
[14] Hierarchical processes in β -sheet peptide self-assembly from the microscopic to the mesoscopic level
Li Deng(邓礼) and Hai Xu(徐海). Chin. Phys. B, 2016, 25(1): 018701.
[15] Self-assembly of block copolymers grafted onto a flat substrate: Recent progress in theory and simulations
Zheng Wang(王铮) and Bao-Hui Li(李宝会). Chin. Phys. B, 2016, 25(1): 016402.
No Suggested Reading articles found!