| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Complex magnetic and transport properties of EuBi2 single crystal |
| Ping Su(苏平)1, Hui Liang(梁慧)1,†, Yi-Ran Li(李祎冉)1, Huan Wang(王欢)2, Na Li(李娜)1, Kai-Yuan Hu(胡开源)1, Ying Zhou(周颖)1, Dan-Dan Wu(吴丹丹)1, Yan Sun(孙燕)1, Qiu-Ju Li(李秋菊)3, Jin-Jin Hong(洪锦锦)4, Xia Zhao(赵霞)5,‡, Xue-Feng Sun(孙学峰)1,§, and Yi-Yan Wang(王义炎)1,¶ |
1 Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; 2 School of Police Equipment Technology, China People's Police University, Langfang 065000, China; 3 School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China; 4 Stony Brook Institute at Anhui University, Anhui University, Hefei 230039, China; 5 School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China |
|
|
|
|
Abstract We report the magnetic and transport properties of EuBi$_2$ single crystal. EuBi$_2$ exhibits complex magnetic behavior at low temperatures. In both the in-plane and out-of-plane directions, three antiferromagnetic (AFM) transitions have been observed at $T_{{\rm N1}}$ $\sim$ 18.9 K, $T_{{\rm N2}} \sim 7.0 $ K, and $T_{{\rm N3}} \sim 3.1 $ K. Among them, the transitions at $T_{{\rm N2}}$ and $T_{{\rm N3}}$ represent the canted AFM orders with ferromagnetic components. As the magnetic field increases, the transition at $T_{{\rm N3}}$ is rapidly suppressed to disappearance. However, the transitions at $T_{{\rm N1}}$ and $T_{{\rm N2}}$ persist until high fields and their signatures can also be reflected in the resistivity and specific heat. Above the magnetic transition temperature $T_{{\rm N1}}$, the resistivity of EuBi$_2$ increases linearly with temperature, exhibiting the strange-metal behavior. In the magnetically ordered region below $T_{{\rm N1}}$, EuBi$_2$ exhibits the weak antilocalization (WAL) effect and large magnetoresistance (475% at 1.8 K and 14 T). It is suggested that the magnetic ordering significantly enhances the spin-orbital coupling interaction and induces the WAL effect.
|
Received: 24 January 2025
Revised: 30 March 2025
Accepted manuscript online: 08 April 2025
|
|
PACS:
|
75.50.Ee
|
(Antiferromagnetics)
|
| |
72.15.Eb
|
(Electrical and thermal conduction in crystalline metals and alloys)
|
| |
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
| |
75.20.En
|
(Metals and alloys)
|
|
| Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFA1406500), the National Natural Science Foundation of China (Grant Nos. 12474098, 12274388, 12174361, 12404191, 52102333, 12404043, and 12204004), and the Natural Science Foundation of Anhui Province (Grant No. 2408085QA024). |
Corresponding Authors:
Hui Liang, Xia Zhao, Xue-Feng Sun, Yi-Yan Wang
E-mail: lianghui@ahu.edu.cn;xiazhao@ustc.edu.cn;xfsun@ahu.edu.cn;wyy@ahu.edu.cn
|
Cite this article:
Ping Su(苏平), Hui Liang(梁慧), Yi-Ran Li(李祎冉), Huan Wang(王欢), Na Li(李娜), Kai-Yuan Hu(胡开源), Ying Zhou(周颖), Dan-Dan Wu(吴丹丹), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), Jin-Jin Hong(洪锦锦), Xia Zhao(赵霞), Xue-Feng Sun(孙学峰), and Yi-Yan Wang(王义炎) Complex magnetic and transport properties of EuBi2 single crystal 2025 Chin. Phys. B 34 067503
|
[1] Papoian G and Hoffmann R 2000 Angew. Chem. Int. Ed. 39 2408 [2] Wang Y Y, Yu Q H and Xia T L 2016 Chin. Phys. B 25 107503 [3] Borisenko S, Evtushinsky D, Gibson Q, Yaresko A, Koepernik K, Kim T, Ali M, van den Brink J, Hoesch M, Fedorov A, Haubold E, Kushnirenko Y, Soldatov I, Schäfer R and Cava R J 2019 Nat. Commun. 10 3424 [4] Wang Y Y, Xu S, Sun L L and Xia T L 2018 Phys. Rev. Mater. 2 021201 [5] Liu J, Hu J, Zhang Q, Graf D, Cao H, Radmanesh S, Adams D, Zhu Y, Cheng G, Liu X, Phelan W, Wei J, Jaime M, Balakirev F, Tennant D, DiTusa J, Chiorescu I, Spinu L and Mao Z 2017 Nat. Mater. 16 905 [6] Wang Y Y, Guo P J, Yu Q H, Xu S, Liu K and Xia T L 2017 New J. Phys. 19 123044 [7] Khoury J F, Han B, Jovanovic M, Singha R, Song X, Queiroz R, Ong N P and Schoop L M 2022 J. Am. Chem. Soc. 144 9785 [8] Yi Z K, Ouyang Z F, Guo P J, Liang H, Li Y R, Su P, Li N, Zhou Y, Wu D D, Sun Y, Yue X Y, Li Q J, Wang S G, Sun X F and Wang Y Y 2024 Adv. Mater. 36 2400166 [9] Han X, Li Y, Yang M, Miao S, Yan D and Shi Y 2023 Phys. Rev. Mater. 7 124406 [10] Khoury J F, Han B, Jovanovic M, Queiroz R, Yang X, Singha R, Salters T H, Pollak C J, Lee S B, Ong N and Schoop L M 2024 Adv. Mater. 36 2404553 [11] Han X, Pi H, Yan D, Zhang R, Li Y, Wang X, Dun Z, Wang Z, Feng H L, Wu Q and Shi Y 2023 Phys. Rev. B 108 075157 [12] Zhang C, Wang Y, Zheng J, Du L, Li Y, Han X, Liu E, Wu Q and Shi Y 2024 Phys. Rev. Mater. 8 034402 [13] Duan L, Wang X C, Zhang J, Hu Z, Zhao J F, Feng Y G, Zhang H L, Lin H J, Chen C T, Wu W, Li Z, Wang R, Zhang J F, Xiang T and Jin C Q 2022 Phys. Rev. B 106 184405 [14] Wang Y Y, Yi Z K, Li N, Li Y R, Su P, Zhou Y,Wu D D, Sun Y, Li Q J, Yue X Y, Zhao X, Sun X F and Liang H 2024 Phys. Rev. B 110 134432 [15] Masuda H, Sakai H, Tokunaga M, Yamasaki Y, Miyake A, Shiogai J, Nakamura S, Awaji S, Tsukazaki A, Nakao H, et al. 2016 Sci. Adv. 2 e1501117 [16] Sun Z, Wang A, Mu H, Wang H, Wang Z, Wu T, Wang Z, Zhou X and Chen X 2021 npj Quantum Mater. 6 94 [17] Yi C, Yang S, Yang M, Wang L, Matsushita Y, Miao S, Jiao Y, Cheng J, Li Y, Yamaura K, Shi Y and Luo J 2017 Phys. Rev. B 96 205103 [18] Zhao K, Chen X, Wang Z, Liu J, Wu J, Xi C, Lv X, Li L, Zhong Z and Gegenwart P 2023 Phys. Rev. B 107 L081112 [19] Kuthanazhi B, Riberolles S X M, Ryan D H, Ryan P J, Kim JW,Wang L L, McQueeney R J, Ueland B G and Canfield P C 2024 Phys. Rev. B 109 214401 [20] Sun Z M and Mao J G 2004 J. Solid State Chem. 177 3752 [21] Bonville P, Hodges J, Shirakawa M, Kasaya M and Schmitt D 2001 Eur. Phys. J. B 21 349 [22] Kumar N, Dhar S K, Thamizhavel A, Bonville P and Manfrinetti P 2010 Phys. Rev. B 81 144414 [23] Sangeetha N S, Pakhira S, Ryan D H, Smetana V, Mudring A V and Johnston D C 2020 Phys. Rev. Mater. 4 084407 [24] Maurya A, Bonville P, Thamizhavel A and Dhar S 2014 J. Phys.: Condens. Matter 26 216001 [25] Bednarchuk O and Kaczorowski D 2015 J. Alloys Compd. 646 291 [26] Maurya A, Bonville P, Kulkarni R, Thamizhavel A and Dhar S 2016 J. Magn. Magn. Mater. 401 823 [27] Greene R L, Mandal P R, Poniatowski N R and Sarkar T 2020 Annu. Rev. Condens. Matter Phys. 11 213 [28] Zhang Y, Su D, Huang Y, Shan Z, Sun H, Huo M, Ye K, Zhang J, Yang Z, Xu Y, Su Y, Li R, Smidman M, Wang M, Jiao L and Yuan H 2024 Nat. Phys. 20 1269 [29] Yuan J, Chen Q, Jiang K, Feng Z, Lin Z, Yu H, He G, Zhang J, Jiang X, Zhang X, Shi Y, Zhang Y, Qin Mingyang andCheng Z G, Tamura N, Yang Y F, Xiang T, Hu J, Takeuchi I, Jin K and Zhao Z 2022 Nature 602 431 [30] Legros A, Benhabib S, Tabis W, Laliberté F, Dion M, Lizaire M, Vignolle B, Vignolles D, Raffy H, Li Z, et al. 2019 Nat. Phys. 15 142 [31] Chowdhury D, Georges A, Parcollet O and Sachdev S 2022 Rev. Mod. Phys. 94 035004 [32] Gegenwart P, Si Q and Steglich F 2008 Nat. Phys. 4 186 [33] Shen B, Zhang Y, Komijani Y, Nicklas M, Borth R, Wang A, Chen Y, Nie Z, Li R, Lu X, Lee H, Smidman M, Steglich F, Coleman P and Yuan H 2020 Nature 579 51 [34] Patel A A, Guo H, Esterlis I and Sachdev S 2023 Science 381 790 [35] OuYang H, Dong Q X, Huang Y F, Xiang J S, Zhang L B, Li C S, Sun P J, Ren Z A and Chen G F 2021 Chin. Phys. B 30 127101 [36] Ohno M, Uchida M, Kurihara R, Minami S, Nakazawa Y, Sato S, Kriener M, Hirayama M, Miyake A, Taguchi Y, Arita R, Tokunaga M and Kawasaki M 2021 Phys. Rev. B 103 165144 [37] Li N, Huang Q, Brassington A, Yue X Y, ChuWJ, Guang S K, Zhou X H, Gao P, Feng E X, Cao H B, Choi E S, Sun Y, Li Q J, Zhao X, Zhou H D and Sun X F 2021 Phys. Rev. B 104 104403 [38] Yue X, ZhangW,Wang Y Y, Zhao Z, Sun X and Ouyang Z 2024 Inorg. Chem. 63 23179 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|