Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 018501    DOI: 10.1088/1674-1056/ad8b38
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Atmospheric neutron single event effects for multiple convolutional neural networks based on 28-nm and 16-nm SoC

Xu Zhao(赵旭)1, Xuecheng Du(杜雪成)1,†, Chao Ma(马超)1, Zhiliang Hu(胡志良)2,3, Weitao Yang(杨卫涛)4, and Bo Zheng(郑波)1
1 School of Nuclear Science and Technology, University of South China, Hengyang 421001, China;
2 Spallation Neutron Source Science Center, Dongguan 523000, China;
3 Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China;
4 School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  The single event effects (SEEs) evaluations caused by atmospheric neutrons were conducted on three different convolutional neural network (CNN) models (Yolov3, MNIST, and ResNet50) in the atmospheric neutron irradiation spectrometer (ANIS) at the China Spallation Neutron Source (CSNS). The Yolov3 and MNIST models were implemented on the XILINX 28-nm system-on-chip (SoC). Meanwhile, the Yolov3 and ResNet50 models were deployed on the XILINX 16-nm FinFET UltraScale+MPSoC. The atmospheric neutron SEEs on the tested CNN systems were comprehensively evaluated from six aspects, including chip type, network architecture, deployment methods, inference time, datasets, and the position of the anchor boxes. The various types of SEE soft errors, SEE cross-sections, and their distribution were analyzed to explore the radiation sensitivities and rules of 28-nm and 16-nm SoC. The current research can provide the technology support of radiation-resistant design of CNN system for developing and applying high-reliability, long-lifespan domestic artificial intelligence chips.
Keywords:  single event effects      atmospheric neutron      system on chip      convolutional neural network  
Received:  22 September 2024      Revised:  21 October 2024      Accepted manuscript online:  25 October 2024
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  61.82.Fk (Semiconductors)  
  85.35.-p (Nanoelectronic devices)  
  61.80.Hg (Neutron radiation effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12305303), the Natural Science Foundation of Hunan Province of China (Grant Nos. 2023JJ40520, 2024JJ2044, and 2021JJ40444), the Science and Technology Innovation Program of Hunan Province, China (Grant No. 2020RC3054), the Postgraduate Scientific Research Innovation Project of Hunan Province, China (Grant No. CX20240831), the Natural Science Basic Research Plan in the Shaanxi Province of China (Grant No. 2023-JC-QN-0015), and the Doctoral Research Fund of University of South China (Grant No. 200XQD033).
Corresponding Authors:  Xuecheng Du     E-mail:  duxuecheng@usc.edu.cn

Cite this article: 

Xu Zhao(赵旭), Xuecheng Du(杜雪成), Chao Ma(马超), Zhiliang Hu(胡志良), Weitao Yang(杨卫涛), and Bo Zheng(郑波) Atmospheric neutron single event effects for multiple convolutional neural networks based on 28-nm and 16-nm SoC 2025 Chin. Phys. B 34 018501

[1] Cosmas K and Kenichi A 2020 Aerospace. 7 159
[2] Gao H B, Cheng B,Wang J Q, Li K Q, Zhao J H and Li D Y 2018 IEEE Trans. Industr. Inform. 14 4224
[3] Jin X M, ChenW, Li J L, Qi C, Guo X Q, Li R B and Liu Y 2019 Chin. Phys. B 28 104212
[4] Guo X T, Pimentel A D and Stefanov T 2023 IEEE Internet Things J. 10 5843
[5] Cheng T, Zhao R S, Wang S, Wang R and Ma H Y 2024 Chin. Phys. B 33 040303
[6] Meloni P, Capotondi A, Deriu G, Brian M, Conti F, Rossi D, Raffo L and Benini L 2018 ACM T Reconfig. Techn. 11 1
[7] Yang S H, Zhang Z G, Lei Z F, Huang Y, Xi K, Wang S L, Liang T J, Tong T, Liu X H, Peng C, Wu F G and Li B 2022 Chin. Phys. B 31 126103
[8] Yang W T, Li Y H, Guo Y X, Zhao H Y, Li Y, Li P, He C H, Guo G, Liu J, Yang S S and An H 2020 Chin. Phys. B 29 108504
[9] Wei J N, Li Y, Liao W L, Liu F, Li Y H, Liu J C, He C H and Guo G 2022 Chin. Phys. B 31 086106
[10] Hu Z L, Yang W T, Zhou B, Liu Y N, He C H, Wang S L, Yu Q Z and Liang T J 2022 J. Nucl. Sci. Technol. 60 473
[11] Mo L H, Yu Q Z, Hu Z L, Zhou B, Yi T C, Yuan L B, Shen F and Liang T J 2023 Microelectron. Reliab. 146 114997
[12] Lbrahim Y, Wang H B, Bai M, Liu Z, Wang J N, Yang Z M and Chen Z M 2020 IEEE Access 8 19490
[13] Abich G, Garibotti R, Reis R and Ost L 2022 IEEE T. Circuits-II 69 679
[14] Zhao X, Du X C, Xiong X, Ma C, Yang W T, Zheng B and Zhou C 2024 Chin. Phys. B 33 078501
[15] Wang H B, Wang Y S, Xiao J H, Wang S L and Liang T J 2021 IEEE Trans. Nucl. Sci. 68 394
[16] Agiakatsikas D, Foutris N, Sari A, Vlagkoulis V, Souvatzoglou L, Psarakis M, Ye R Q, Goodacre J, Luján M, Kastriotou M, Cazzaniga C and Frost C 2024 IEEE Trans. Reliab. 73 771
[17] Ruospo A and Sanchez E 2021 Appl. Sci. 11 6455
[18] Rech P 2024 IEEE Trans. Nucl. Sci. 71 377
[19] Xilinx, lnc. 2018 Zynq-7000 SoC Data Sheet: Overview, DS190 (v1.11.1)
[20] Xilinx, lnc. 2024 Zynq UltraScale+ MPSoC Data Sheet: Overview, DS891 (v1.11).
[21] Liang S Y, Wu H, Zhen L, Hua Q Z, Garg S, Kaddoum G, Hassan M M and Yu K P 2022 IEEE Trans. Intell. Transp. Syst. 23 25345
[22] Cheng Q, HuangMQ, Man C H, Shen A, Dai L Y, Yu H and Hashimoto M 2023 IEEE T. Circuits-I 70 3978
[23] Traiola M, dos Santos F F, Rech P, Cazzaniga C, Sentieys O and Kritikakou A 2024 IEEE Trans. Nucl. Sci. 71 845
[24] Liu B K, He F J, Du S Q, Li J C and Liu W J 2023 J. Intell. Fuzzy Syst. 45 5807
[25] Mascarenhas S and Agarwal M 2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and Applications (CENTCON), November 19-21, 2021, Bengaluru, India, p. 96
[26] Xilinx, lnc. 2023 Vitis High-Level Synthesis User Guide, UG1399
[27] Xilinx, lnc. 2021 Vitis AI User Guide, UG1414 (v1.2)
[28] Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-induced Soft Errors in Semiconductor Devices
[29] Bosio A, Bernardi P, Ruospo A and Sanchez E 2019 IEEE Latin American Test Symposium (LATS), March 11-13, 2019, Santiago, Chile, p. 1
[30] Howard J W, Carts M A, Stattel R, Rogers C E, Lrwin T L, Dunsmore C, Sciarini J A and LaBel K A 2001 IEEE Radiation Effects DataWorkshop (REDW) and IEEE Nuclear and Space Radiation Effects Conference (NSREC), July 16-20, 2001, Vancouver, BC, Canada, p. 38
[1] Deep learning-assisted common temperature measurement based on visible light imaging
Jia-Yi Zhu(朱佳仪), Zhi-Min He(何志民), Cheng Huang(黄成), Jun Zeng(曾峻), Hui-Chuan Lin(林惠川), Fu-Chang Chen(陈福昌), Chao-Qun Yu(余超群), Yan Li(李燕), Yong-Tao Zhang(张永涛), Huan-Ting Chen(陈焕庭), and Ji-Xiong Pu(蒲继雄). Chin. Phys. B, 2024, 33(8): 080701.
[2] Single event effects evaluation on convolution neural network in Xilinx 28 nm system on chip
Xu Zhao(赵旭), Xuecheng Du(杜雪成), Xu Xiong(熊旭), Chao Ma(马超), Weitao Yang(杨卫涛), Bo Zheng(郑波), and Chao Zhou(周超). Chin. Phys. B, 2024, 33(7): 078501.
[3] Analysis of learnability of a novel hybrid quantum—classical convolutional neural network in image classification
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Rui Wang(王睿), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2024, 33(4): 040303.
[4] Determination of quantum toric error correction code threshold using convolutional neural network decoders
Hao-Wen Wang(王浩文), Yun-Jia Xue(薛韵佳), Yu-Lin Ma(马玉林), Nan Hua(华南), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(1): 010303.
[5] Convolutional neural network for transient grating frequency-resolved optical gating trace retrieval and its algorithm optimization
Siyuan Xu(许思源), Xiaoxian Zhu(朱孝先), Ji Wang(王佶), Yuanfeng Li(李远锋), Yitan Gao(高亦谈), Kun Zhao(赵昆), Jiangfeng Zhu(朱江峰), Dacheng Zhang(张大成), Yunlin Chen(陈云琳), and Zhiyi Wei(魏志义). Chin. Phys. B, 2021, 30(4): 048402.
[6] Computational prediction of RNA tertiary structures using machine learning methods
Bin Huang(黄斌), Yuanyang Du(杜渊洋), Shuai Zhang(张帅), Wenfei Li(李文飞), Jun Wang (王骏), and Jian Zhang(张建)†. Chin. Phys. B, 2020, 29(10): 108704.
[7] Enhancing convolutional neural network scheme forrheumatoid arthritis grading with limited clinical data
Jian Tang(汤键), Zhibin Jin(金志斌), Xue Zhou(周雪), Weijing Zhang(张玮婧), Min Wu(吴敏), Qinghong Shen(沈庆宏), Qian Cheng(程茜), Xueding Wang(王学鼎), Jie Yuan(袁杰). Chin. Phys. B, 2019, 28(3): 038701.
[8] Mechanisms of atmospheric neutron-induced single event upsets in nanometric SOI and bulk SRAM devices based on experiment-verified simulation tool
Zhi-Feng Lei(雷志锋), Zhan-Gang Zhang(张战刚), Yun-Fei En(恩云飞), Yun Huang(黄云). Chin. Phys. B, 2018, 27(6): 066105.
[9] Synergistic effect of total ionizing dose on single event effect induced by pulsed laser microbeam on SiGe heterojunction bipolar transistor
Jin-Xin Zhang(张晋新), Hong-Xia Guo(郭红霞), Xiao-Yu Pan(潘霄宇), Qi Guo(郭旗), Feng-Qi Zhang(张凤祁), Juan Feng(冯娟), Xin Wang(王信), Yin Wei(魏莹), Xian-Xiang Wu(吴宪祥). Chin. Phys. B, 2018, 27(10): 108501.
[10] Three-dimensional simulation of fabrication process-dependent effects on single event effects of SiGe heterojunction bipolar transistor
Jin-Xin Zhang(张晋新), Chao-Hui He(贺朝会), Hong-Xia Guo(郭红霞), Pei Li(李培), Bao-Long Guo(郭宝龙), Xian-Xiang Wu(吴宪祥). Chin. Phys. B, 2017, 26(8): 088502.
[11] Large energy-loss straggling of swift heavy ions in ultra-thin active silicon layers
Zhang Zhan-Gang (张战刚), Liu Jie (刘杰), Hou Ming-Dong (侯明东), Sun You-Mei (孙友梅), Zhao Fa-Zhan (赵发展), Liu Gang (刘刚), Han Zheng-Sheng (韩郑生), Geng Chao (耿超), Liu Jian-De (刘建德), Xi Kai (习凯), Duan Jing-Lai (段敬来), Yao Hui-Jun (姚会军), Mo Dan (莫丹), Luo Jie (罗捷), Gu Song (古松), Liu Tian-Qi (刘天奇). Chin. Phys. B, 2013, 22(9): 096103.
[12] Angular dependence of multiple-bit upset response in static random access memories under heavy ion irradiation
Zhang Zhan-Gang (张战刚), Liu Jie (刘杰), Hou Ming-Dong (侯明东), Sun You-Mei (孙友梅), Su Hong (苏弘), Duan Jing-Lai (段敬来), Mo Dan (莫丹), Yao Hui-Jun (姚会军), Luo Jie (罗捷), Gu Song (古松), Geng Chao (耿超), Xi Kai (习凯). Chin. Phys. B, 2013, 22(8): 086102.
[13] Radiation damage effects on power VDMOS devices with composite SiO2–Si3N4 films
Gao Bo (高博), Liu Gang (刘刚), Wang Li-Xin (王立新), Han Zheng-Sheng (韩郑生), Song Li-Mei (宋李梅), Zhang Yan-Fei (张彦飞), Teng Rui (腾瑞), Wu Hai-Zhou (吴海舟). Chin. Phys. B, 2013, 22(3): 036103.
No Suggested Reading articles found!