Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(7): 077302    DOI: 10.1088/1674-1056/25/7/077302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Strain-induced insulator-metal transition in ferroelectric BaTiO3 (001) surface: First-principles study

Lin Yang(杨林)1, Chang-An Wang(王长安)1, Cong Liu(刘聪)1, Ming-Hui Qin(秦明辉)1, Xu-Bing Lu(陆旭兵)1, Xing-Sen Gao(高兴森)1, Min Zeng(曾敏)1, Jun-Ming Liu(刘俊明)1,2
1 Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China;
2 National Laboratory of Solid State Microstructures and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  The electronic properties of TiO2-terminated BaTiO3 (001) surface subjected to biaxial strain have been studied using first-principles calculations based on density functional theory. The Ti ions are always inward shifted either at compressive or tension strains, while the inward shift of the Ba ions occurs only for high compressive strain, implying an enhanced electric dipole moment in the case of high compressive strain. In particular, an insulator-metal transition is predicted at a compressive biaxial strain of 0.0475. These changes present a very interesting possibility for engineering the electronic properties of ferroelectric BaTiO3 (001) surface.
Keywords:  first-principles      ferroelectricity      insulator-metal transition      strain-induced effect  
Received:  28 October 2015      Revised:  26 March 2016      Accepted manuscript online: 
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  73.20.At (Surface states, band structure, electron density of states)  
  77.55.fe (BaTiO3-based films)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 1574091, 51272078, and 51431006), the Natural Science Foundation of Guangdong Province of China (Grant No. 2015A030313375), the Science and Technology Planning Project of Guangdong Province of China (Grant No. 2015B090927006), and the Program for International Innovation Cooperation Platform of Guangzhou City, China (Grant No. 2014J4500016).
Corresponding Authors:  Min Zeng     E-mail:  zengmin@scnu.edu.cn

Cite this article: 

Lin Yang(杨林), Chang-An Wang(王长安), Cong Liu(刘聪), Ming-Hui Qin(秦明辉), Xu-Bing Lu(陆旭兵), Xing-Sen Gao(高兴森), Min Zeng(曾敏), Jun-Ming Liu(刘俊明) Strain-induced insulator-metal transition in ferroelectric BaTiO3 (001) surface: First-principles study 2016 Chin. Phys. B 25 077302

[1] Scott J F 2000 Ferroelectric Memories (Springer: Berlin) p. 247
[2] Park K I, Xu S, Liu Y, Hwang G T, Kang S J L, Wang Z L and Lee K J 2010 Nano Lett. 10 4939
[3] Choi K J, Biegalski M, Li Y L, Sharan A, Schubert J, Uecker R, Reiche P, Chen Y B, Pan X Q, Gopalan V, Chen L Q, Schlom D G and Eom C B 2004 Science 5 1005
[4] Lee H N, Christen H M, Chisholm M F, Rouleau C M and Lowndes D H 2005 Nature 433 395
[5] Kreisel J, Weber M C, Dix N, Sanchez F, Thomas P A and Fontcuberta J 2012 Adv. Funct. Mater. 22 5044
[6] Wen Z, Li C, Wu D, Li A D and Ming N B 2013 Nat. Mater. 12 617
[7] Meyerheim H L, Klimenta F, Ernst A, Mohseni K, Ostanin S, Fechner M, Parihar S, Maznichenko I V, Mertig I and Kirschner J 2011 Phys. Rev. Lett. 106 087203
[8] Plodinec M, Santic A, Zavasnik J, Ceh M and Gajovic A 2014 Appl. Phys. Lett. 105 152101
[9] Li C J, Huang L S, Li T, Lu W M, Qiu X P, Huang Z, Liu Z Q, Zeng S W, Guo R, Zhao Y L, Zeng K Y, Coey J M D, Chen J S, Ariando and Venkatesan T 2015 Nano Lett. 15 2568
[10] Chen J P, Luo Y, Ou X, Yuan G L, Wang Y P, Yang Y, Yin J and Liu Z G 2013 J. Appl. Phys. 113 204105
[11] Cai M Q, Du Y and Huang B Y 2011 Appl. Phys. Lett. 98 102907
[12] Stengel M, Vanderbilt D and Spaldin N A 2009 Nat. Mater. 8 392
[13] Lu H, Liu X, Burton J D, Bark C W, Wang Y, Zhang Y, Kim D J, Stamm A, Lukashev P, Felker D A, Folkman C M, Gao P, Rzchowski M S, Pan X Q, Eom C B, Tsymbal E Y and Gruverman A 2012 Adv. Mater. 24 1209
[14] Damodaran A R, Breckenfeld E, Chen Z H, Lee S K and Martin L W 2014 Adv. Mater. 26 6341
[15] Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, Tagantsev A K, Pan X Q, Streiffer S K, Chen L Q, Kirchoefer S W, Levy J and Schlom D G 2004 Nature 430 758
[16] Lee D, Lu H, Gu Y, Choi S Y, Li S D, Ryu S, Paude T R, Song K, Mikheev E, Lee S, Stemmer S, Tenne D A, Oh S H, Tsymba E Y, Wu X, Chen L Q, Gruverman A and Eom C B 2015 Science 349 1314
[17] Paul J, Nishimatsu T, Kawazoe Y and Waghmare U V 2007 Phys. Rev. Lett. 99 077601
[18] Schilling A, Prosandeev S, McQuaid R G P, Bellaiche L, Scott J F and Gregg J M 2011 Phys. Rev. B 84 064110
[19] Hirai K, Kan D, Ichikawa N, Mibu K, Yoda Y, Andreeva M and Shimakawa Y 2015 Sci. Rep. 5 7894
[20] Dieguez O, Rabe K M and Vanderbilt D 2005 Phys. Rev. B 72 144101
[21] Yang Q, Cao J X, Ma Y, Zhou Y C, Lou X J and Yang J 2013 J. Appl. Phys. 114 034109
[22] Yang Q, Cao J X, Zhou Y C, Zhang Y, Ma Y and Lou X J 2013 Appl. Phys. Lett. 103 142911
[23] Tenne D A, Turner P, Schmidt J D, Biegalski M, Li Y L, Chen L Q, Soukiassian A, Trolier-McKinstry S, Schlom D G, Xi X X, Fong D D, Fuoss P H, Eastman J A, Stephenson G B, Thompson C and Streiffer S K 2009 Phys. Rev. Lett. 103 177601
[24] Shin J, Nascimento V B, Borisevich A Y, Plummer E W, Kalinin S V and Baddorf A P 2008 Phys. Rev. B 77 245437
[25] Meyerheim H L, Ernst A, Mohseni K, Maznichenko I V, Ostanin S, Klimenta F, Jedrecy N, Feng W, Mertig I, Felici R and Kirschner J 2012 Phys. Rev. Lett. 108 215502
[26] Iles N, Driss K K, Kellou A and Aubert P 2014 Comp. Mater. Sci. 87 123
[27] Fechner M, Ostanin S and Mertig I 2008 Phys. Rev. B 77 094112
[28] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[29] Gajdos M, Hummer K, Kresse G, Furthmüller J and Bechstedt F 2006 Phys. Rev. B 73 045112
[30] Li Y L, Yu R, Shi T, Liao Z Y, Song D S, Zhou H H, Cheng Z Y and Zhu J 2015 J. Phys.: Condens. Matter 27 095901
[31] Tian X B, Yang X H and Cao W Z 2013 J. Eelectron. Mater. 42 2504
[32] Ni L H, Liu Y, Ren Z H, Song C L and Han G R 2011 Chin. Phys. B 20 106102
[33] Rodin A S, Carvalho A and Castro Neto A H 2014 Phys. Rev. Lett. 112 176801
[34] Torre A L, Botello-Mendez A, Baaziz W, Charlier J C and Banhart F 2015 Nat. Commun. 6 6636
[35] Chen Z P, He J J, Zhou P, Na J and Sun L Z 2015 Comp. Mater. Sci. 110 102
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[10] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[11] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[12] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[13] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[14] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[15] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
No Suggested Reading articles found!