Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 060501    DOI: 10.1088/1674-1056/adc2e1
GENERAL Prev   Next  

Synchronous dynamics of robotic arms driven by Chua circuits

Guoping Sun(孙国平), Mingxin Xu(许明鑫), Guoqiang Jin(金国强), and Xufeng Wang(王旭峰)†
College of Mechanical and Electrical Engineering, Tarim University, Aral 843300, China
Abstract  This study investigates chaotic synchronization via field-coupled nonlinear circuits, achieving both electrical synchronization and energy balance. The driving mechanism biomimetically parallels neuromuscular signal transduction, where synchronized neuronal firing induces coordinated muscle contractions that produce macroscopic movement. We implement a Chua circuit-driven robotic arm with tunable periodic/chaotic oscillations through parameter modulation and external current injection. Bifurcation analysis maps oscillation modes under varying external stimuli. Inductive coupling between two systems with distinct initial conditions facilitates magnetic energy transfer, optimized by an energy balance criterion. A bio-inspired exponential gain method dynamically regulates the coupling strength to optimize the energy transfer efficiency. The effects of ambient electromagnetic noise on synchronization are systematically quantified. The results indicate electrically modulatable robotic arm dynamics, with the coupled systems achieving autonomous rapid synchronization. Despite noise-induced desynchronization, inter-system errors rapidly decay and stabilize within bounded limits, confirming robust stability.
Keywords:  Hamilton energy      field coupling      synchronization      robotic arms  
Received:  03 January 2025      Revised:  20 February 2025      Accepted manuscript online:  20 March 2025
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  52.55.Dy (General theory and basic studies of plasma lifetime, particle and heat loss, energy balance, field structure, etc.)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2023YFD2000601-02).
Corresponding Authors:  Xufeng Wang     E-mail:  wxfwyq@126.com

Cite this article: 

Guoping Sun(孙国平), Mingxin Xu(许明鑫), Guoqiang Jin(金国强), and Xufeng Wang(王旭峰) Synchronous dynamics of robotic arms driven by Chua circuits 2025 Chin. Phys. B 34 060501

[1] Murphy T E, Cohen A B, Ravoori B, Schmitt K R B, Setty A V, Sorrentino F,Williams C R S, Ott E and Roy R 2010 Philos. Trans. R. Soc. A 368 343
[2] Jensen R V 2002 Am. J. Phys. 70 607
[3] Strogatz S H, Mirollo R E and Matthews P C 1992 Phys. Rev. Lett. 68 2730
[4] Maurer H and Pesch H J 1994 SIAM J. Control Optim. 32 1542
[5] Lee H J, Park J B and Chen G 2001 IEEE Trans. Fuzzy Syst. 9 369
[6] Mou J, Sun K, Ruan J and He S 2016 Nonlinear Dyn. 86 1735
[7] Razzaghi P, Khatib E A and Hurmuzlu Y 2019 Nonlinear Dyn. 97 161
[8] Hu Y, Chen G, Li Z and Knoll A 2023 IEEE Trans. Cybern. 53 4002
[9] Sato M, Hubbard B E and Sievers A J 2006 Rev. Mod. Phys. 78 137
[10] Chamley-Campbell J, Campbell G R and Ross R 1979 Physiol. Rev. 59 1
[11] Gerthoffer W T 2007 Circ. Res. 100 607
[12] Blau H M and Webster C 1981 Proc. Natl. Acad. Sci. USA 78 5623
[13] Gomes I, Korneta W, Stavrinides S G, Picos R and Chua L O 2023 Chaos Solitons Fractals 166 112927
[14] Yang F, Ma J and An X 2022 Chaos Solitons Fractals 162 112450
[15] Bhatt V, Ranjan A and Joshi M 2024 Circ. Syst. Signal Process. 43 2051
[16] Li Z and Chen K 2023 Chaos Solitons Fractals 175 114017
[17] Liu Z, Ma J, Zhang G and Zhang Y 2019 Appl. Math. Comput. 360 94
[18] Südhof T 2021 J. Cell Biol. 220 e202103052
[19] Südhof T C 2018 Neuron 100 276
[20] Cannas B and Cincotti S 2002 Int. J. Circuit Theory Appl. 30 625
[21] Zhang X,Wu F, Ma J, Hobiny A, Alzahrani F and Ren G 2020 AEU-Int. J. Electron. Commun. 115 153050
[22] Chen S, Zhang T, Tappertzhofen S, Yang Y and Valov I 2023 Adv. Mater. 35 2301924
[23] Zhang L, An X and Zhang J 2023 Phys. Scr. 98 045203
[24] Sun G, Yang F, Ren G and Wang C 2023 Chaos Solitons Fractals 169 113230
[25] Zhou Q and Wei D Q 2021 Nonlinear Dyn. 105 753
[26] Wang C, Sun G, Yang F and Ma J 2022 AEU-Int. J. Electron. Commun. 153 154280
[27] Chua L O 1994 Circuit Theory Appl. 22 279
[28] Fortuna L, Frasca M and Xibilia M G 2009 Chua’s Circuit Implementations (World Scientific)
[29] Simon E and Bronner G 1967 IEEE Trans. Nucl. Sci. 14 33
[30] Frackowiak E and Béguin F 2001 Carbon 39 937
[31] Fischer A, Koprucki T, Gärtner K, Tietze M L, Brückner J, Lüssem B, Leo K, Glitzky A and Scholz R 2014 Adv. Funct. Mater. 24 3367
[32] Zhou P, Zhang X, Hu X and Ren G 2022 Nonlinear Dyn. 110 1879
[33] Mbeunga N K, Nana B andWoafo P 2021 Chaos Solitons Fractals 153 111484
[34] Chedjou J C, Woafo P and Domngang S 2000 J. Vib. Acoust. 123 170
[35] Sanger J W, Chowrashi P, Shaner N C, Spalthoff S, Wang J, Freeman N L and Sanger J M 2002 Clin. Orthop. Relat. Res. 403 S153
[36] Gregorio C C and Antin P B 2000 Trends Cell Biol. 10 355
[37] Au Y 2004 Cell. Mol. Life Sci. 61 3016
[38] Sackmann E 2015 Biochim. Biophys. Acta 1853 3132
[39] Kitio Kwuimy C A and Woafo P 2008 Nonlinear Dyn. 53 201
[40] Yamapi R and Aziz-AlaouiMA 2007 Commun. Nonlinear Sci. 12 1534
[41] Tacha O I, Volos Ch K, Kyprianidis I M, Stouboulos I N, Vaidyanathan S and Pham V T 2016 Appl. Math. Comput. 276 200
[42] Wang B, Lv M, Zhang X and Ma J 2024 Phys. Scr. 99 055225
[43] Yang F, Guo Q and Ma J 2024 Cogn. Neurodyn. 18 673
[44] Njitacke Z T, Awrejcewicz J, Ramakrishnan B, Rajagopal K and Kengne J 2022 Nonlinear Dyn. 107 2867
[45] Li R, Dong E, Tong J and Du S 2022 Chaos 32 013127
[46] Wan J, Wu F, Ma J and Wang W 2024 Chin. Phys. B 33 050504
[47] Ren G, Xu Y and Wang C 2017 Nonlinear Dyn. 88 893
[48] Xie Y, Yao Z and Ma J 2022 Front. Inform. Technol. Electron. Eng. 23 1407
[49] Yamakou M E and Tran T D 2022 Nonlinear Dyn. 107 2847
[50] Li Y, Niu B, Zong G, Zhao J and Zhao X 2022 Int. J. Syst. Sci. 53 199
[51] Zhao Y, Zhang H, Chen Z, Wang H and Zhao X 2022 Int. J. Syst. Sci. 53 1545
[52] Dong Z, Wang X, Zhang X, et al. 2023 Nonlinear Anal. Hybrid Syst. 47 101291
[53] Qian J, Chen L and Sun J Q 2024 Eng. Struct. 304 117677
[54] Tripura T and Chakraborty S 2023 Mech. Syst. Signal Process. 187 109939
[55] Pancaldi F, Dibiase L and Cocconcelli M 2023 Mech. Syst. Signal Process. 188 109975
[56] Xu Y, Jia Y, Ma J, Alsaedi A and Ahmad B 2017 Chaos Solitons Fractals 104 435
[57] Lv M, Ma J, Yao Y and Alzahrani F 2019 Sci. China Technol. Sci. 62 448
[58] Xiao W, Min F, Li H and Shi W 2024 TCAS-I 71 5618
[59] Li H and Min F 2024 IEEE Trans. Industr. Inform. 20 10259
[60] Fattorini L, Tirabasso A and Lunghi A 2017 Int. J. Ind. Ergonom. 62 13
[1] Optimal synchronization of higher-order Kuramoto model on hypergraphs
Chong-Yang Wang(王重阳), Bi-Yun Ji(季碧芸), and Linyuan Lü(吕琳媛). Chin. Phys. B, 2025, 34(7): 070502.
[2] Effects of noise on synchronization in simplicial complexes
Linying Xiang(项林英), Shuwei Yao(姚姝玮), Yining Chen(陈艺宁), Ruitong Yan(闫锐桐), and Ruya Xia(夏儒雅). Chin. Phys. B, 2025, 34(7): 070503.
[3] Finite time hybrid synchronization of heterogeneous duplex complex networks via time-varying intermittent control
Cheng-Jun Xie(解成俊) and Xiang-Qing Lu(卢向清). Chin. Phys. B, 2025, 34(4): 040601.
[4] A solution method for decomposing vector fields in Hamilton energy
Xin Zhao(赵昕), Ming Yi(易鸣), Zhou-Chao Wei(魏周超), Yuan Zhu(朱媛), and Lu-Lu Lu(鹿露露). Chin. Phys. B, 2024, 33(9): 098702.
[5] Proposal for a realtime Einstein-synchronization-defined satellite virtual clock
Chenhao Yan(严晨皓), Xueyi Tang(汤雪逸), Shiguang Wang(王时光), Lijiaoyue Meng(孟李皎悦), Haiyuan Sun(孙海媛), Yibin He(何奕彬), and Lijun Wang(王力军). Chin. Phys. B, 2024, 33(7): 070601.
[6] Coexisting fast-slow dendritic traveling waves in a 3D-array electric field coupled neuronal network
Xile Wei(魏熙乐), Zeyu Ren(任泽宇), Meili Lu(卢梅丽), Yaqin Fan(樊亚琴), and Siyuan Chang(常思远). Chin. Phys. B, 2024, 33(6): 068702.
[7] Effects of asymmetric coupling and boundary on the dynamic behaviors of a random nearest neighbor coupled system
Ling Xu(徐玲) and Lei Jiang(姜磊). Chin. Phys. B, 2024, 33(6): 060503.
[8] Dynamics and synchronization of neural models with memristive membranes under energy coupling
Jingyue Wan(万婧玥), Fuqiang Wu(吴富强), Jun Ma(马军), and Wenshuai Wang(汪文帅). Chin. Phys. B, 2024, 33(5): 050504.
[9] Synchronization and firing mode transition of two neurons in a bilateral auditory system driven by a high-low frequency signal
Charles Omotomide Apata, Yi-Rui Tang(唐浥瑞), Yi-Fan Zhou(周祎凡), Long Jiang(蒋龙), and Qi-Ming Pei(裴启明). Chin. Phys. B, 2024, 33(5): 058704.
[10] Chimera states of phase oscillator populations with nonlocal higher-order couplings
Yonggang Wu(伍勇刚), Huajian Yu(余华健), Zhigang Zheng(郑志刚), and Can Xu(徐灿). Chin. Phys. B, 2024, 33(4): 040504.
[11] Dynamical behaviors in discrete memristor-coupled small-world neuronal networks
Jieyu Lu(鲁婕妤), Xiaohua Xie(谢小华), Yaping Lu(卢亚平), Yalian Wu(吴亚联), Chunlai Li(李春来), and Minglin Ma(马铭磷). Chin. Phys. B, 2024, 33(4): 048701.
[12] Dynamical behavior of memristor-coupled heterogeneous discrete neural networks with synaptic crosstalk
Minglin Ma(马铭磷), Kangling Xiong(熊康灵), Zhijun Li(李志军), and Shaobo He(贺少波). Chin. Phys. B, 2024, 33(2): 028706.
[13] Dynamics and synchronization in a memristor-coupled discrete heterogeneous neuron network considering noise
Xun Yan(晏询), Zhijun Li(李志军), and Chunlai Li(李春来). Chin. Phys. B, 2024, 33(2): 028705.
[14] Quantum synchronization with correlated baths
Lei Li(李磊), Chun-Hui Wang(王春辉), Hong-Hao Yin(尹洪浩), Ru-Quan Wang(王如泉), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2024, 33(2): 020306.
[15] A fractional-order chaotic Lorenz-based chemical system: Dynamic investigation, complexity analysis, chaos synchronization, and its application to secure communication
Haneche Nabil and Hamaizia Tayeb. Chin. Phys. B, 2024, 33(12): 120503.
No Suggested Reading articles found!