Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 060303    DOI: 10.1088/1674-1056/add507
GENERAL Prev   Next  

Witnessing the distribution of sources in quantum networks via hierarchical nonlocality

Shu-Yuan Yang(杨舒媛), Jin-Chuan Hou(侯晋川), and Kan He(贺衎)†
College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China
Abstract  Quantum networks with multiple sources always face performance challenges due to the vulnerability of quantum systems. Thus, it is highly desirable to have the capability to continuously monitor and determine the exact number of quantum sources versus classical sources present within the network. Hierarchical network nonlocality can reveal the relationship between network nonlocality and the number of quantum sources within the network, thus becoming a way to address the aforementioned issue. However, up to now, precise hierarchical network nonlocality inequalities have only been established for star networks, and cannot be obtained for other non-star structured networks [Phys. Rev. Lett. 128 010403 (2022) and Phys. Rev. A 110 022617 (2024)]. In this paper, we establish more refined criteria for hierarchical network nonlocality inequalities in arbitrary network structures. Violating such inequalities can reveal the exact number of quantum sources in the network. These results enhance the understanding of quantum source distribution in complex network topologies.
Keywords:  hierarchical network nonlicality      chain network      arbitrary network  
Received:  28 March 2025      Revised:  22 April 2025      Accepted manuscript online:  07 May 2025
PACS:  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
  03.65.-w (Quantum mechanics)  
  03.65.Aa (Quantum systems with finite Hilbert space)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12271394).
Corresponding Authors:  Kan He     E-mail:  hekanquantum@163.com

Cite this article: 

Shu-Yuan Yang(杨舒媛), Jin-Chuan Hou(侯晋川), and Kan He(贺衎) Witnessing the distribution of sources in quantum networks via hierarchical nonlocality 2025 Chin. Phys. B 34 060303

[1] Bennett C H and Brassard G 1984 Theor. Comput. Sci 560 175
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Cirac J I, Ekert A, Huelga S F and Macchiavello C 1999 Phys. Rev. A 59 4249
[4] Wehner S, Elkouss D and Hanson R 2018 Science 362 7412
[5] Steane A 1998 Rep. Prog. Phys. 61117
[6] Dowling J P and Milburn G J 2003 Philos. Trans. R. Soc. A 361 1655
[7] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O’Brien J L 2010 Nature 464 45
[8] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[9] Zurek W H 2003 Rev. Mod. Phys. 75 715
[10] Collins O A, Jenkins S D, Kuzmich A and Kennedy T A B 2007 Phys. Rev. Lett 98 060502
[11] Weinbrenner L T, Vandré L, Coopmans T and Gühne O 2024 Phys. Rev. A 109052611
[12] Shchukin E, Schmidt F and Loock P 2019 Phys. Rev. A 100 032322
[13] Kristjánsson H, Zhong Y, Munson A, et al. 2024 npj Quantum Inf 10 131
[14] Branciard C, Gisin N and Pironio S 2010 Phys. Rev. Lett. 104 170401
[15] Branciard C, Rosset D, Gisin N and Pironio S 2012 Phys. Rev. A 85 032119
[16] Mukherjee K, Paul B and Sarkar D 2015 Quantum Inf. Process. 14 2025
[17] Amit K, Mostak K M, Indrani C and Debasis S 2020 Phys. Rev. 102 052222
[18] Tavakoli A, Skrzypczyk P, Cavalcanti D and Acín A 2014 Phys. Rev. A 90 062109
[19] Andreoli F, Carvacho G, Santodonato L, Chaves R and Sciarrino F 2017 New J. Phys. 19 113020
[20] Renou M O, Baumer E, Boreiri S, Brunner N, Gisin N and Beigi S 2019 Phys. Rev. Lett. 123 140401
[21] Jing B, Wang X J, Yu Y, Sun P F, Jiang Y, Yang S J, Jiang W H and Luo X Y 2019 Nat. Photonics 13 pp. 210-213
[22] Yang L H, Qi X F and Hou J C 2021 Phys. Rev. A 104 042405
[23] Yang L H, Qi X F and Hou J C 2022 Entropy 24 691
[24] Yang L H, Qi X F and Hou J C 2022 Quantum Inf. Process. 21
[25] Chaves R 2016 Phys. Rev. Lett. 116 010402
[26] Rosset D, Branciard C, Barnea T J, Putz G, Brunner N and Gisin N 2016 Phys. Rev. Lett. 116 010403
[27] Tavakoli A 2016 Phys. Rev. A 93 030101(R)
[28] Luo M X 2018 Phys. Rev. Lett. 120 140402
[29] Branciard C, Brunner N, Buhrman H, Cleve R, Gisin N, Portmann S, Rosset D and Szegedy M 2012 Phys. Rev. Lett. 109 100401
[30] Pozas-Kerstjens A, Gisin N and Tavakoli A 2022 Phys. Rev. Lett. 128 010403
[31] Håkansson E, Piveteau A, Muhammad S and Bourennane M 2022 arXiv:2201.06361 [quant-ph]
[32] Huang C X, Hu X M, Guo Y, Zhang C, Liu B H, Huang Y F, Li C F, Guo G C, Gisin N, Branciard C and Tavakoli A 2022 Phys. Rev. Lett. 129 030502
[33] Wang N N, Pozas-Kerstjens A, Zhang C, Liu B H, Huang Y F, Li C F, Guo G C, Gisin N and Tavakoli A 2023 Nat. Commun. 14 2153
[34] Gu X M, Huang L, Pozas-Kerstjens A, Jiang Y F, Wu D, Bai B, Sun Q C, Chen M C, Zhang J, Yu S, Zhang Q, Lu C Y and Pan J W 2023 Phys. Rev. Lett. 130 190201
[35] Luo M X, Yang X and Pozas-Kerstjens A 2024 Phys. Rev. A 110 022617
[36] Yang S Y, Hou J C and He K 2024 Chin. Phys. B 33 070304
[37] Pan X B, Chen X B, Xu G, Dou Z, Li Z P and Yang Y X 2022 Chin. Phys. B 31 010305
[38] Yang S Y, He K, Hou J C, Ma Z H, Fei S M and Luo M X 2024 Phys. Rev. A 110 032437
[39] Shi Y Y, Duan L M and Vidal G 2022 Chin. Phys. B 31 010305
[40] Wall M L and D’Aguanno G 2021 Phys. Rev. A 104 042408
[41] Wang N N, Yang X, Yang Y H, Luo M X, Liu B H, Huang Y F, Li C F and Guo G C 2025 Phys. Rev. Lett. 134 080202
[1] Empirical topological investigation of practical supply chains based on complex networks
Hao Liao(廖好), Jing Shen(沈婧), Xing-Tong Wu(吴兴桐), Bo-Kui Chen(陈博奎), Mingyang Zhou(周明洋). Chin. Phys. B, 2017, 26(11): 110505.
No Suggested Reading articles found!