Synergistic bulk and surface engineering via rapid quenching for high-performance Li-rich layered manganese oxide cathodes
Xinyun Xiong(熊馨筠)1,3, Sichen Jiao(焦思晨)2,4, Qinghua Zhang(张庆华)1, Luyao Wang(王璐瑶)1,4, Kun Zhou(周坤)1,3, Bowei Cao(曹博维)1,3, Xilin Xu(徐熙林)2,4, Xiqian Yu(禹习谦)1,2,4,†, and Hong Li(李泓)1,2,4,‡
1 National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 Beijing Frontier Research Center on Clean Energy, Huairou Division, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 4 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract Lithium-rich manganese-based cathodes (LRMs) have garnered significant attention as promising candidates for high-energy-density batteries due to their exceptional specific capacity exceeding 300 mAh/g, achieved through synergistic anionic and cationic redox reactions. However, these materials face challenges including oxygen release-induced structural degradation and consequent capacity fading. To address these issues, strategies such as surface modification and bulk phase engineering have been explored. In this study, we developed a facile and cost-effective quenching approach that simultaneously modifies both surface and bulk characteristics. Multi-scale characterization and computational analysis reveal that rapid cooling partially preserves the high-temperature disordered phase in the bulk structure, thereby enhancing the structural stability. Concurrently, Li/H exchange at the surface forms a robust rock-salt/spinel passivation layer, effectively suppressing oxygen evolution and mitigating interfacial side reactions. This dual modification strategy demonstrates a synergistic stabilization effect. The enhanced oxygen redox activity coexists with the improved structural integrity, leading to superior electrochemical performance. The optimized cathode delivers an initial discharge capacity approaching 307.14 mAh/g at 0.1 C and remarkable cycling stability with 94.12% capacity retention after 200 cycles at 1 C. This study presents a straightforward and economical strategy for concurrent surface-bulk modification, offering valuable insights for designing high-capacity LRM cathodes with extended cycle life.
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB2502200) and the National Natural Science Foundation of China (Grant Nos. 52325207, 22239003, and 22393904).
Corresponding Authors:
Xiqian Yu, Hong Li
E-mail: xyu@iphy.ac.cn;hli@iphy.ac.cn
Cite this article:
Xinyun Xiong(熊馨筠), Sichen Jiao(焦思晨), Qinghua Zhang(张庆华), Luyao Wang(王璐瑶), Kun Zhou(周坤), Bowei Cao(曹博维), Xilin Xu(徐熙林), Xiqian Yu(禹习谦), and Hong Li(李泓) Synergistic bulk and surface engineering via rapid quenching for high-performance Li-rich layered manganese oxide cathodes 2025 Chin. Phys. B 34 058201
[1] Han Q, Yu H, Cai L, Chen L, Li C and Jiang H 2024 Proc. Natl. Acad. Sci. USA 121 e2317282121 [2] Wang S, Liang K, Zhao H, Wu M, He J, Wei P, Ding Z, Li J, Huang X and Ren Y 2025 Nat. Commun. 16 1 [3] GuoW,WeiW, Zhu H, Hu Y, Jiang H and Li C 2023 eScience 3 100082 [4] Zhou X, Hong F, Wang S, Zhao T, Peng J, Zhang B, Fan W, Xing W, Zuo M, Zhang P, Zhou Y, Lv G, Zhong Y, Hua W and Xiang W 2024 eScience 4 100276 [5] Assat G and Tarascon J M 2018 Nat. Energy 3 373 [6] Sathiya M, Abakumov A M, Foix D, Rousse G, Ramesha K, Sauban‘ere M, DoubletML, Vezin H, Laisa C P, Prakash A S, Gonbeau D, VanTendeloo G and Tarascon J M 2015 Nat. Mater. 14 230 [7] Qian D, Xu B, Chi M and Meng Y S 2014 Phys. Chem. Chem. Phys. 16 14665 [8] Gu M, Belharouak I, Zheng J, Wu H, Xiao J, Genc A, Amine K, Thevuthasan S, Baer D R, Zhang J G, Browning N D, Liu J and Wang C 2013 ACS Nano 7 760 [9] Hu E, Yu X, Lin R, Bi X, Lu J, Bak S, Nam K W, Xin H L, Jaye C, Fischer D A, Amine K and Yang X Q 2018 Nat. Energy 3 690 [10] McColl K, Coles S W, Zarabadi-Poor P, Morgan B J and Islam M S 2024 Nat. Mater. 23 826 [11] Yan P, Zheng J, Tang Z K, Devaraj A, Chen G, Amine K, Zhang J G, Liu L M and Wang C 2019 Nat. Nanotechnol. 14 602 [12] Li Z, Cao S, Chen J, Wu L, Chen M, Ding H, Wang R, Guo W, Bai Y, Liu M and Wang X 2024 Small 20 2400641 [13] Wei H, Huang Y, Tang L, Yan C, He Z, Mao J, Dai K, Wu X, Jiang J and Zheng J 2021 Nano Energy 88 106288 [14] Yang S, Wang P, Wei H, Tang L, Zhang X, He Z, Li Y, Tong H and Zheng J 2019 Nano Energy 63 103889 [15] Li S, Yang L, Liu Z, Zhang C, Shen X, Gao Y, Kong Q, Hu Z, Kuo C Y, Lin H J, Chen C T, Yang Y, Ma J, Hu Z,Wang X, Yu R,Wang Z and Chen L 2023 Energy Storage Mater. 55 356 [16] Liu S, Liu Z, Shen X, Li W, Gao Y, Banis M N, Li M, Chen K, Zhu L, Yu R, Wang Z, Sun X, Lu G, Kong Q, Bai X and Chen L 2018 Surf. Adv. Energy Mater. 8 1802105 [17] Geng K Q, Yang M Q, Meng J X, Zhou L F, Wang Y Q, Dmytro S, Zhang Q, Zhong S W and Ma Q X 2022 Tungsten 4 323 [18] Guo W, Zhang C, Zhang Y, Lin L, He W, Xie Q, Sa B, Wang L and Peng D 2021 Adv. Mater. 33 2103173 [19] Qiu B, Zhang M, Wu L, Wang J, Xia Y, Qian D, Liu H, Hy S, Chen Y, An K, Zhu Y, Liu Z and Meng Y S 2016 Nat. Commun. 7 12108 [20] Yang Y, Zhu Q, Yang J, Liu H, Ren Y, Sui X,Wang P, Sun G andWang Z 2023 Adv. Funct. Mater. 33 2304979 [21] Ding X, Luo D, Cui J, Xie H, Ren Q and Lin Z 2020 Angew Chem Int Ed 59 7778 [22] Ku L, Cai Y, Ma Y, Zheng H, Liu P, Qiao Z, Xie Q, Wang L and Peng D L 2019 Chem. Eng. J. 370 499 [23] Jiang Y, Yu F, Que L, Deng L, Xia Y, Ke W, Han Y and Wang Z 2021 ACS Energy Lett. 6 3836 [24] Song J, Ning F, Zuo Y, Li A, Wang H, Zhang K, Yang T, Yang Y, Gao C, Xiao W, Jiang Z, Chen T, Feng G and Xia D 2023 Adv. Mater. 35 2208726 [25] Li Z, Li Y, Zhang M, Yin Z, Yin L, Xu S, Zuo C, Qi R, Xue H, Hu J, Cao B, Chu M, Zhao W, Ren Y, Xie L, Ren G and Pan F 2021 Adv. Energy Mater. 11 2101962 [26] Zhang C, Wei B, Wang M, Zhang D, Uchiyama T, Liang C, Chen L, Uchimoto Y, Zhang R,Wang P and Wei W 2022 Energy Storage Mater. 46 512 [27] Zhang K, Qi J, Song J, Zuo Y, Yang Y, Yang T, Chen T, Liu X, Chen L and Xia D 2022 Adv. Mater. 34 2109564 [28] Sun X, Qin C, Zhao B, Jia S, Wang Z, Yang T, Liu X, Pan L, Zheng L, Luo D and Zhang Y 2024 Energy Storage Mater. 70 103559 [29] Zhao Y, Liu J,Wang S, Ji R, Xia Q, Ding Z,WeiW, Liu Y,Wang P and Ivey D G 2016 Adv. Funct. Mater. 26 4760 [30] Zheng C, Feng J, Zhang D, Zhang D and Li J 2024 ACS Energy Lett. 9 1339 [31] Peng Y, Wu L, Li C F, Luo B C, Feng X Y, Hu Z Y, Li Y and Su B L 2023 Electrochimica Acta 454 142390 [32] Wu T, Liu X, Zhang X, Lu Y, Wang B, Deng Q, Yang Y, Wang E, Lyu Z, Li Y, Wang Y, Lyu Y, He C, Ren Y, Xu G, Sun X, Amine K and Yu H 2021 Adv. Mater. 33 2001358 [33] Wu T, Zhang X, Wang Y, Zhang N, Li H, Guan Y, Xiao D, Liu S and Yu H 2023 Adv. Funct. Mater. 33 2210154 [34] Li F, Li J C, Gong M S, Lin Z Z, Chang X M, Dong M H and Hou P Y 2025 Rare Met. [35] Chen Y, Liu Y, Zhang J, Zhu H, Ren Y, Wang W, Zhang Q, Zhang Y, Yuan Q, Chen G X, Gallington L C, Li K, Liu X,Wu J, Liu Q and Chen Y 2022 Energy Storage Mater. 51 756 [36] McCalla E, Rowe A W, Brown C R, Hacquebard L R P and Dahn J R 2013 J. Electrochem. Soc. 160 A1134 [37] Huang L, Liu L, Wu H, Wang Y, Liu H and Zhang Y 2019 J. Alloys Compd. 775 921 [38] Wang L, Xu L, Xue W, Fang Q, Liu H, Liu Y, Zhou K, Li Y, Wang X, Wang X, Yang X, Yu X and Wang X 2024 Nano Energy 121 109241 [39] van de Walle A 2009 Calphad 33 266 [40] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [41] Blöchl P E 1994 Phys. Rev. B 50 17953 [42] Sun J, Ruzsinszky A and Perdew J P 2015 Phys. Rev. Lett. 115 036402 [43] Zhang Y, Yin C, Qiu B, Chen G, Shang Y and Liu Z 2022 Energy Storage Mater. 53 763 [44] Shunmugasundaram R, Senthil Arumugam R and Dahn J R 2015 Loss Chem. Mater. 27 757 [45] Liu P, Zhang H, He W, Xiong T, Cheng Y, Xie Q, Ma Y, Zheng H, Wang L, Zhu Z Z, Peng Y, Mai L and Peng D L 2019 J. Am. Chem. Soc. 141 10876 [46] Wang N, Chen Y, Yin J, Yan W, Li F and Jin Y 2022 J. Alloys Compd. 900 163549 [47] Hao Z, Sun H, Ni Y, Yang G, Yang Z, Hao Z, Wang R, Yang P, Lu Y, Zhao Q, Xie W, Yan Z, Zhang W and Chen J 2024 Adv. Mater. 36 2307617 [48] Shunmugasundaram R, Senthil Arumugam R, Harris K J, Goward G R and Dahn J R 2016 Chem. Mater. 28 55 [49] Aktekin B, Massel F, Ahmadi M, Valvo M, Hahlin M, Zipprich W, Marzano F, Duda L, Younesi R, Edström K and Brandell D 2020 ACS Appl. Energy Mater. 3 6001 [50] McCalla E, Rowe A W, Camardese J and Dahn J R 2013 Chem. Mater. 25 2716 [51] Reimers J N, Fuller E W, Rossen E and Dahn J R 1993 J. Electrochem. Soc. 140 3396 [52] Findlay S D, Shibata N, Sawada H, Okunishi E, Kondo Y and Ikuhara Y 2010 Ultramicroscopy 110 903 [53] Gou X, Hao Z, Hao Z, Yang G, Yang Z, Zhang X, Yan Z, Zhao Q and Chen J 2022 Adv. Funct. Mater. 32 2112088 [54] Zeng L, Liang H, Wang Y, Ying X, Qiu B, Pan J, Zhang Y, Wen W, Wang X, Gu Q, Li J, Shi K, Shen Y, Liu Q and Liu Z 2025 Energy Environ. Sci. 18 284 [55] Luo D, Ding X, Fan J, Zhang Z, Liu P, Yang X, Guo J, Sun S and Lin Z 2020 Angewandte Chemie International Edition 59 23061 [56] Zhang X, Shi J, Liang J, Yin Y, Zhang J, Yu X and Guo Y 2018 Adv. Mater. 30 1801751 [57] Sathiya M, Rousse G, Ramesha K, Laisa C P, Vezin H, Sougrati M T, Doublet M-L, Foix D, Gonbeau D, Walker W, Prakash A S, Ben Hassine M, Dupont L and Tarascon J M 2013 Nat. Mater. 12 827 [58] Chen J, Yang Y, Tang Y, Wang Y, Li H, Xiao X, Wang S, Darma M S D, Etter M, Missyul A, Tayal A, Knapp M, Ehrenberg H, Indris S and Hua W 2023 Adv. Funct. Mater. 33 2211515 [59] Zhang C, Li Y, Liu Y, Shen X, Hu Z, Chen J M, Lin H J, Chen C T, Kong Q, Hu Y, Gao Y, Haw S C, Wang X, Yu R, Wang Z and Chen L 2024 Nano Energy 121 109254 [60] Lin C, Piao Y, Kan Y, Bareñ J, Bloom I, Ren Y, Amine K and Chen Z 2014 ACS Appl. Mater. Interfaces 6 12692 [61] Luo K, Roberts M R, Hao R, Guerrini N, Pickup D M, Liu Y S, Edstr öm K, Guo J, Chadwick A V, Duda L C and Bruce P G 2016 Nat. Chem. 8 684 [62] Zhou K, Zhang Z, Cao B, Jiao S, Zhu J, Xu X, Chen P, Xiong X, Xu L, Wang Q, Wang X, Yu X and Li H 2025 Nano Energy 135 110639 [63] Li H, Fong R, Woo M, Ahmed H, Seo D H, Malik R and Lee J 2022 Joule 6 53 [64] Zhang Y, Chen Z, Shi X, Meng C, Das P, Zheng S, Pan F and Wu Z S 2023 Adv. Energy Mater. 13 2203045 [65] Wang E, Xiao D, Wu T, Liu X, Zhou Y, Wang B, Lin T, Zhang X and Yu H 2022 Adv. Funct. Mater. 32 2201744
Energy conversion materials for the space solar power station Xiao-Na Ren(任晓娜), Chang-Chun Ge(葛昌纯), Zhi-Pei Chen(陈志培), Irfan(伊凡), Yongguang Tu(涂用广), Ying-Chun Zhang(张迎春), Li Wang(王立), Zi-Li Liu(刘自立), and Yi-Qiu Guan(关怡秋). Chin. Phys. B, 2023, 32(7): 078802.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.