Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 058201    DOI: 10.1088/1674-1056/adc673
RAPID COMMUNICATION Prev   Next  

Synergistic bulk and surface engineering via rapid quenching for high-performance Li-rich layered manganese oxide cathodes

Xinyun Xiong(熊馨筠)1,3, Sichen Jiao(焦思晨)2,4, Qinghua Zhang(张庆华)1, Luyao Wang(王璐瑶)1,4, Kun Zhou(周坤)1,3, Bowei Cao(曹博维)1,3, Xilin Xu(徐熙林)2,4, Xiqian Yu(禹习谦)1,2,4,†, and Hong Li(李泓)1,2,4,‡
1 National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Beijing Frontier Research Center on Clean Energy, Huairou Division, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Lithium-rich manganese-based cathodes (LRMs) have garnered significant attention as promising candidates for high-energy-density batteries due to their exceptional specific capacity exceeding 300 mAh/g, achieved through synergistic anionic and cationic redox reactions. However, these materials face challenges including oxygen release-induced structural degradation and consequent capacity fading. To address these issues, strategies such as surface modification and bulk phase engineering have been explored. In this study, we developed a facile and cost-effective quenching approach that simultaneously modifies both surface and bulk characteristics. Multi-scale characterization and computational analysis reveal that rapid cooling partially preserves the high-temperature disordered phase in the bulk structure, thereby enhancing the structural stability. Concurrently, Li+/H+ exchange at the surface forms a robust rock-salt/spinel passivation layer, effectively suppressing oxygen evolution and mitigating interfacial side reactions. This dual modification strategy demonstrates a synergistic stabilization effect. The enhanced oxygen redox activity coexists with the improved structural integrity, leading to superior electrochemical performance. The optimized cathode delivers an initial discharge capacity approaching 307.14 mAh/g at 0.1 C and remarkable cycling stability with 94.12% capacity retention after 200 cycles at 1 C. This study presents a straightforward and economical strategy for concurrent surface-bulk modification, offering valuable insights for designing high-capacity LRM cathodes with extended cycle life.
Keywords:  lithium-rich manganese-based cathodes      surface-bulk engineering      oxygen redox activity      high-capacity cathodes      long-cycle stability  
Received:  04 March 2025      Revised:  19 March 2025      Accepted manuscript online:  28 March 2025
PACS:  82.47.Aa (Lithium-ion batteries)  
  82.45.Fk (Electrodes)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB2502200) and the National Natural Science Foundation of China (Grant Nos. 52325207, 22239003, and 22393904).
Corresponding Authors:  Xiqian Yu, Hong Li     E-mail:  xyu@iphy.ac.cn;hli@iphy.ac.cn

Cite this article: 

Xinyun Xiong(熊馨筠), Sichen Jiao(焦思晨), Qinghua Zhang(张庆华), Luyao Wang(王璐瑶), Kun Zhou(周坤), Bowei Cao(曹博维), Xilin Xu(徐熙林), Xiqian Yu(禹习谦), and Hong Li(李泓) Synergistic bulk and surface engineering via rapid quenching for high-performance Li-rich layered manganese oxide cathodes 2025 Chin. Phys. B 34 058201

[1] Han Q, Yu H, Cai L, Chen L, Li C and Jiang H 2024 Proc. Natl. Acad. Sci. USA 121 e2317282121
[2] Wang S, Liang K, Zhao H, Wu M, He J, Wei P, Ding Z, Li J, Huang X and Ren Y 2025 Nat. Commun. 16 1
[3] GuoW,WeiW, Zhu H, Hu Y, Jiang H and Li C 2023 eScience 3 100082
[4] Zhou X, Hong F, Wang S, Zhao T, Peng J, Zhang B, Fan W, Xing W, Zuo M, Zhang P, Zhou Y, Lv G, Zhong Y, Hua W and Xiang W 2024 eScience 4 100276
[5] Assat G and Tarascon J M 2018 Nat. Energy 3 373
[6] Sathiya M, Abakumov A M, Foix D, Rousse G, Ramesha K, Sauban‘ere M, DoubletML, Vezin H, Laisa C P, Prakash A S, Gonbeau D, VanTendeloo G and Tarascon J M 2015 Nat. Mater. 14 230
[7] Qian D, Xu B, Chi M and Meng Y S 2014 Phys. Chem. Chem. Phys. 16 14665
[8] Gu M, Belharouak I, Zheng J, Wu H, Xiao J, Genc A, Amine K, Thevuthasan S, Baer D R, Zhang J G, Browning N D, Liu J and Wang C 2013 ACS Nano 7 760
[9] Hu E, Yu X, Lin R, Bi X, Lu J, Bak S, Nam K W, Xin H L, Jaye C, Fischer D A, Amine K and Yang X Q 2018 Nat. Energy 3 690
[10] McColl K, Coles S W, Zarabadi-Poor P, Morgan B J and Islam M S 2024 Nat. Mater. 23 826
[11] Yan P, Zheng J, Tang Z K, Devaraj A, Chen G, Amine K, Zhang J G, Liu L M and Wang C 2019 Nat. Nanotechnol. 14 602
[12] Li Z, Cao S, Chen J, Wu L, Chen M, Ding H, Wang R, Guo W, Bai Y, Liu M and Wang X 2024 Small 20 2400641
[13] Wei H, Huang Y, Tang L, Yan C, He Z, Mao J, Dai K, Wu X, Jiang J and Zheng J 2021 Nano Energy 88 106288
[14] Yang S, Wang P, Wei H, Tang L, Zhang X, He Z, Li Y, Tong H and Zheng J 2019 Nano Energy 63 103889
[15] Li S, Yang L, Liu Z, Zhang C, Shen X, Gao Y, Kong Q, Hu Z, Kuo C Y, Lin H J, Chen C T, Yang Y, Ma J, Hu Z,Wang X, Yu R,Wang Z and Chen L 2023 Energy Storage Mater. 55 356
[16] Liu S, Liu Z, Shen X, Li W, Gao Y, Banis M N, Li M, Chen K, Zhu L, Yu R, Wang Z, Sun X, Lu G, Kong Q, Bai X and Chen L 2018 Surf. Adv. Energy Mater. 8 1802105
[17] Geng K Q, Yang M Q, Meng J X, Zhou L F, Wang Y Q, Dmytro S, Zhang Q, Zhong S W and Ma Q X 2022 Tungsten 4 323
[18] Guo W, Zhang C, Zhang Y, Lin L, He W, Xie Q, Sa B, Wang L and Peng D 2021 Adv. Mater. 33 2103173
[19] Qiu B, Zhang M, Wu L, Wang J, Xia Y, Qian D, Liu H, Hy S, Chen Y, An K, Zhu Y, Liu Z and Meng Y S 2016 Nat. Commun. 7 12108
[20] Yang Y, Zhu Q, Yang J, Liu H, Ren Y, Sui X,Wang P, Sun G andWang Z 2023 Adv. Funct. Mater. 33 2304979
[21] Ding X, Luo D, Cui J, Xie H, Ren Q and Lin Z 2020 Angew Chem Int Ed 59 7778
[22] Ku L, Cai Y, Ma Y, Zheng H, Liu P, Qiao Z, Xie Q, Wang L and Peng D L 2019 Chem. Eng. J. 370 499
[23] Jiang Y, Yu F, Que L, Deng L, Xia Y, Ke W, Han Y and Wang Z 2021 ACS Energy Lett. 6 3836
[24] Song J, Ning F, Zuo Y, Li A, Wang H, Zhang K, Yang T, Yang Y, Gao C, Xiao W, Jiang Z, Chen T, Feng G and Xia D 2023 Adv. Mater. 35 2208726
[25] Li Z, Li Y, Zhang M, Yin Z, Yin L, Xu S, Zuo C, Qi R, Xue H, Hu J, Cao B, Chu M, Zhao W, Ren Y, Xie L, Ren G and Pan F 2021 Adv. Energy Mater. 11 2101962
[26] Zhang C, Wei B, Wang M, Zhang D, Uchiyama T, Liang C, Chen L, Uchimoto Y, Zhang R,Wang P and Wei W 2022 Energy Storage Mater. 46 512
[27] Zhang K, Qi J, Song J, Zuo Y, Yang Y, Yang T, Chen T, Liu X, Chen L and Xia D 2022 Adv. Mater. 34 2109564
[28] Sun X, Qin C, Zhao B, Jia S, Wang Z, Yang T, Liu X, Pan L, Zheng L, Luo D and Zhang Y 2024 Energy Storage Mater. 70 103559
[29] Zhao Y, Liu J,Wang S, Ji R, Xia Q, Ding Z,WeiW, Liu Y,Wang P and Ivey D G 2016 Adv. Funct. Mater. 26 4760
[30] Zheng C, Feng J, Zhang D, Zhang D and Li J 2024 ACS Energy Lett. 9 1339
[31] Peng Y, Wu L, Li C F, Luo B C, Feng X Y, Hu Z Y, Li Y and Su B L 2023 Electrochimica Acta 454 142390
[32] Wu T, Liu X, Zhang X, Lu Y, Wang B, Deng Q, Yang Y, Wang E, Lyu Z, Li Y, Wang Y, Lyu Y, He C, Ren Y, Xu G, Sun X, Amine K and Yu H 2021 Adv. Mater. 33 2001358
[33] Wu T, Zhang X, Wang Y, Zhang N, Li H, Guan Y, Xiao D, Liu S and Yu H 2023 Adv. Funct. Mater. 33 2210154
[34] Li F, Li J C, Gong M S, Lin Z Z, Chang X M, Dong M H and Hou P Y 2025 Rare Met.
[35] Chen Y, Liu Y, Zhang J, Zhu H, Ren Y, Wang W, Zhang Q, Zhang Y, Yuan Q, Chen G X, Gallington L C, Li K, Liu X,Wu J, Liu Q and Chen Y 2022 Energy Storage Mater. 51 756
[36] McCalla E, Rowe A W, Brown C R, Hacquebard L R P and Dahn J R 2013 J. Electrochem. Soc. 160 A1134
[37] Huang L, Liu L, Wu H, Wang Y, Liu H and Zhang Y 2019 J. Alloys Compd. 775 921
[38] Wang L, Xu L, Xue W, Fang Q, Liu H, Liu Y, Zhou K, Li Y, Wang X, Wang X, Yang X, Yu X and Wang X 2024 Nano Energy 121 109241
[39] van de Walle A 2009 Calphad 33 266
[40] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[41] Blöchl P E 1994 Phys. Rev. B 50 17953
[42] Sun J, Ruzsinszky A and Perdew J P 2015 Phys. Rev. Lett. 115 036402
[43] Zhang Y, Yin C, Qiu B, Chen G, Shang Y and Liu Z 2022 Energy Storage Mater. 53 763
[44] Shunmugasundaram R, Senthil Arumugam R and Dahn J R 2015 Loss Chem. Mater. 27 757
[45] Liu P, Zhang H, He W, Xiong T, Cheng Y, Xie Q, Ma Y, Zheng H, Wang L, Zhu Z Z, Peng Y, Mai L and Peng D L 2019 J. Am. Chem. Soc. 141 10876
[46] Wang N, Chen Y, Yin J, Yan W, Li F and Jin Y 2022 J. Alloys Compd. 900 163549
[47] Hao Z, Sun H, Ni Y, Yang G, Yang Z, Hao Z, Wang R, Yang P, Lu Y, Zhao Q, Xie W, Yan Z, Zhang W and Chen J 2024 Adv. Mater. 36 2307617
[48] Shunmugasundaram R, Senthil Arumugam R, Harris K J, Goward G R and Dahn J R 2016 Chem. Mater. 28 55
[49] Aktekin B, Massel F, Ahmadi M, Valvo M, Hahlin M, Zipprich W, Marzano F, Duda L, Younesi R, Edström K and Brandell D 2020 ACS Appl. Energy Mater. 3 6001
[50] McCalla E, Rowe A W, Camardese J and Dahn J R 2013 Chem. Mater. 25 2716
[51] Reimers J N, Fuller E W, Rossen E and Dahn J R 1993 J. Electrochem. Soc. 140 3396
[52] Findlay S D, Shibata N, Sawada H, Okunishi E, Kondo Y and Ikuhara Y 2010 Ultramicroscopy 110 903
[53] Gou X, Hao Z, Hao Z, Yang G, Yang Z, Zhang X, Yan Z, Zhao Q and Chen J 2022 Adv. Funct. Mater. 32 2112088
[54] Zeng L, Liang H, Wang Y, Ying X, Qiu B, Pan J, Zhang Y, Wen W, Wang X, Gu Q, Li J, Shi K, Shen Y, Liu Q and Liu Z 2025 Energy Environ. Sci. 18 284
[55] Luo D, Ding X, Fan J, Zhang Z, Liu P, Yang X, Guo J, Sun S and Lin Z 2020 Angewandte Chemie International Edition 59 23061
[56] Zhang X, Shi J, Liang J, Yin Y, Zhang J, Yu X and Guo Y 2018 Adv. Mater. 30 1801751
[57] Sathiya M, Rousse G, Ramesha K, Laisa C P, Vezin H, Sougrati M T, Doublet M-L, Foix D, Gonbeau D, Walker W, Prakash A S, Ben Hassine M, Dupont L and Tarascon J M 2013 Nat. Mater. 12 827
[58] Chen J, Yang Y, Tang Y, Wang Y, Li H, Xiao X, Wang S, Darma M S D, Etter M, Missyul A, Tayal A, Knapp M, Ehrenberg H, Indris S and Hua W 2023 Adv. Funct. Mater. 33 2211515
[59] Zhang C, Li Y, Liu Y, Shen X, Hu Z, Chen J M, Lin H J, Chen C T, Kong Q, Hu Y, Gao Y, Haw S C, Wang X, Yu R, Wang Z and Chen L 2024 Nano Energy 121 109254
[60] Lin C, Piao Y, Kan Y, Bareñ J, Bloom I, Ren Y, Amine K and Chen Z 2014 ACS Appl. Mater. Interfaces 6 12692
[61] Luo K, Roberts M R, Hao R, Guerrini N, Pickup D M, Liu Y S, Edstr öm K, Guo J, Chadwick A V, Duda L C and Bruce P G 2016 Nat. Chem. 8 684
[62] Zhou K, Zhang Z, Cao B, Jiao S, Zhu J, Xu X, Chen P, Xiong X, Xu L, Wang Q, Wang X, Yu X and Li H 2025 Nano Energy 135 110639
[63] Li H, Fong R, Woo M, Ahmed H, Seo D H, Malik R and Lee J 2022 Joule 6 53
[64] Zhang Y, Chen Z, Shi X, Meng C, Das P, Zheng S, Pan F and Wu Z S 2023 Adv. Energy Mater. 13 2203045
[65] Wang E, Xiao D, Wu T, Liu X, Zhou Y, Wang B, Lin T, Zhang X and Yu H 2022 Adv. Funct. Mater. 32 2201744
[1] Significant increase in thermal conductivity of cathode material LiFePO4 by Na substitution: A machine learning interatomic potential-assisted investigation
Shi-Yi Li(李诗怡), Qian Liu(刘骞), Yu-Jia Zeng(曾育佳), Guofeng Xie(谢国锋), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2025, 34(2): 028201.
[2] Defect chemistry engineering of Ga-doped garnet electrolyte with high stability for solid-state lithium metal batteries
Sihan Chen(陈思汗), Jun Li(黎俊), Keke Liu(刘可可), Xiaochen Sun(孙笑晨), Jingwei Wan(万京伟), Huiyu Zhai(翟慧宇), Xinfeng Tang(唐新峰), and Gangjian Tan(谭刚健). Chin. Phys. B, 2024, 33(8): 088203.
[3] Interface and mechanical degradation mechanisms of the silicon anode in sulfide-based solid-state batteries at high temperatures
Qiuchen Wang(王秋辰), Yuli Huang(黄昱力), Jing Xu(许晶), Xiqian Yu(禹习谦), Hong Li(李泓), and Liquan Chen(陈立泉). Chin. Phys. B, 2024, 33(8): 088201.
[4] Surface encapsulation of layered oxide cathode material with NiTiO3 for enhanced cycling stability of Na-ion batteries
Zilin Hu(胡紫霖), Bin Tang(唐彬), Ting Lin(林挺), Chu Zhang(张楚), Yaoshen Niu(牛耀申), Yuan Liu(刘渊), Like Gao(高立克), Fei Xie(谢飞), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yongsheng Hu(胡勇胜). Chin. Phys. B, 2024, 33(8): 088202.
[5] Atomistic understanding of capacity loss in LiNiO2 for high-nickel Li-ion batteries: First-principles study
Shuai Peng(彭率), Li-Juan Chen(陈丽娟), Chang-Chun He(何长春), and Xiao-Bao Yang(杨小宝). Chin. Phys. B, 2024, 33(5): 058201.
[6] Accurate estimation of Li/Ni mixing degree of lithium nickel oxide cathode materials
Penghao Chen(陈鹏浩), Lei Xu(徐磊), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2024, 33(5): 058202.
[7] Structural stability and ion migration of Li2MnO3 cathode material under high pressures
Ze-Ren Xie(谢泽仁), Si-Si Zhou(周思思), Bei-Bei He(贺贝贝), Huan-Wen Wang(王欢文), Yan-Sheng Gong(公衍生), Jun Jin(金俊), Xiang-Gong Zhang(张祥功), and Rui Wang(汪锐). Chin. Phys. B, 2023, 32(12): 126101.
[8] Influence of carbon sources on the performance of carbon-coated nano-silicon
Lin Wang(王琳), Na Li(李娜), Hao-Sen Chen(陈浩森), and Wei-Li Song(宋维力). Chin. Phys. B, 2023, 32(10): 108201.
[9] A novel calculation strategy for optimized prediction of the reduction of electrochemical window at anode
Guochen Sun(孙国宸), Jian Gao(高健), and Hong Li(李泓). Chin. Phys. B, 2023, 32(7): 078201.
[10] Energy conversion materials for the space solar power station
Xiao-Na Ren(任晓娜), Chang-Chun Ge(葛昌纯), Zhi-Pei Chen(陈志培), Irfan(伊凡), Yongguang Tu(涂用广), Ying-Chun Zhang(张迎春), Li Wang(王立), Zi-Li Liu(刘自立), and Yi-Qiu Guan(关怡秋). Chin. Phys. B, 2023, 32(7): 078802.
[11] Structural, electronic, and Li-ion mobility properties of garnet-type Li7La3Zr2O12 surface: An insight from first-principles calculations
Jing-Xuan Wang(王靖轩), Bao-Zhen Sun(孙宝珍), Mei Li(李梅), Mu-Sheng Wu(吴木生), and Bo Xu(徐波). Chin. Phys. B, 2023, 32(6): 068201.
[12] Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2023, 32(5): 058201.
[13] Zr-doping stabilizes spinel LiMn2O4 as a low cost long cycle life cathode for lithium ion batteries
Xiang-Gong Zhang(张祥功), Wei Wu(吴伟), Si-Si Zhou(周思思), Fei Huang(黄飞), Shi-Hao Xu(许诗浩), Liang Yin(尹良), Wei Yang(杨伟), and Hong Li(李泓). Chin. Phys. B, 2023, 32(5): 056101.
[14] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[15] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
No Suggested Reading articles found!