Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 078201    DOI: 10.1088/1674-1056/accd51
RAPID COMMUNICATION Prev   Next  

A novel calculation strategy for optimized prediction of the reduction of electrochemical window at anode

Guochen Sun(孙国宸)1,2, Jian Gao(高健)3,†, and Hong Li(李泓)1,‡
1 Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
3 College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Abstract  The reduction of the electrochemical window (EW) of electrolytes plays a significant role in assessing their compatibility with the anode in lithium-ion batteries. However, the accurate calculation of the reduction of EW is still challenging due to missing the solvation effects, condensation effects, kinetic factors, and the passivation on anodes. The theoretical prediction of the intrinsic and apparent EW is confirmed by a comprehensive experimental analysis of ethylene carbonate-dimethyl carbonate (EC-DMC) electrolytes, combining linear sweep voltammetry (LSV) and gas chromatography-mass spectrometry (GC-MS). The proposed novel kinetic normal distribution theory model can quantitatively explain the current density from LSV and affirm acetaldehyde (MeCHO) as one of the primary reduction products of EC. The solvent effect restricts the intrinsic EW of EC-DMC without lithium salt to 2.6 V (vs. Li+/Li) arising from the Marcus-Gerischer theory and the passivation of MeCHO on the anode broadens the apparent EW to 0.3 V (vs. Li+/Li) arising from the normal distribution of the lowest unoccupied molecular orbital (LUMO) for MeCHO produced by thermal motion. In addition, the passivation on the anode depends intensively on the lithium salt, resulting in more complicated influences on the apparent EW.
Keywords:  lithium battery      electrolyte      reduction kinetic      electrochemical window  
Received:  20 March 2023      Revised:  13 April 2023      Accepted manuscript online:  16 April 2023
PACS:  82.47.Aa (Lithium-ion batteries)  
  82.45.Gj (Electrolytes)  
  65.40.gk (Electrochemical properties)  
  87.15.R- (Reactions and kinetics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1964205 and 22109005), the National Key Research and Development Program of China (Grant No. 2016YFB0100100), and Beijing Municipal Science & Technology Commission, China (Grant No. Z191100004719001).
Corresponding Authors:  Jian Gao, Hong Li     E-mail:  gaojian@mail.buct.edu.cn;hli@iphy.ac.cn

Cite this article: 

Guochen Sun(孙国宸), Jian Gao(高健), and Hong Li(李泓) A novel calculation strategy for optimized prediction of the reduction of electrochemical window at anode 2023 Chin. Phys. B 32 078201

[1] Harper G, Sommerville R, Kendrick E, et al. 2019 Nature 575 75
[2] Xu K 2014 Chem. Rev. 114 11503
[3] Severson K A, Attia P M, Jin N, et al. 2019 Nature Energy 4 383
[4] Qiao R X, Zhang M J, Liu Y D, et al. 2016 Chin. Phys. Lett. 33 078201
[5] Liu W, Liu P and Mitlin D 2020 Advanced Energy Materials 10 2002297
[6] Hou C, Han J, Liu P, et al. 2019 Advanced Energy Materials 9 1902675
[7] Xu K 2004 Chem. Rev. 104 4303
[8] Huang W, Attia P M, Wang H, et al. 2019 Nano Lett. 19 5140
[9] Han B, Zou Y, Xu G, et al. 2021 Energy Environ. Sci. 14 4882
[10] Parimalam B S, Macintosh A D, Kadam R, et al. 2017 The Journal of Physical Chemistry C 121 22733
[11] Shkrob I A, Zhu Y, Marin T W, et al. 2013 The Journal of Physical Chemistry C 117 19255
[12] Lee C H, Dura J A, Lebar A, et al. 2019 Journal of Power Sources 412 725
[13] Gachot G, Ribiere P, Mathiron D, et al. 2011 Anal. Chem. 83 478
[14] Ganesh P, Kent P R C and Jiang D E 2012 The Journal of Physical Chemistry C 116 24476
[15] Ushirogata K, Sodeyama K, Okuno Y, et al. 2013 J. Am. Chem. Soc. 135 11967
[16] Tasaki K 2005 J. Phys. Chem. B 109 2920
[17] Leung K 2013 Chem. Phys. Lett. 568-569 1
[18] Spotte-Smith E W C, Kam R L, Barter D, et al. 2022 ACS Energy Letters 7 1446
[19] Hossain M J, Pawar G, Liaw B, et al. 2020 J. Chem. Phys. 152 184301
[20] Martinez De La Hoz J M, Leung K and Balbuena P B 2013 ACS Appl. Mater. Interfaces 5 13457
[21] Liu Y, Wu Y, Sun Q, et al. 2022 Adv. Theory Simul. 5 2100612
[22] Ebadi M, Brandell D and Araujo C M 2016 J. Chem. Phys. 145 204701
[23] Ohba N, Ogata S and Asahi R 2019 The Journal of Physical Chemistry C 123 9673
[24] Borodin O 2019 Current Opinion in Electrochemistry 13 86
[25] Wang A, Kadam S, Li H, et al. 2018 npj Computational Materials 4 15
[26] Bard A J and Faulkner L R 2000 Electrochemical Methods: Fundamentals and Applications, 2nd Ed. (New York: John Wiley & Sons, Incorporated.) pp. 115-132
[27] Wang Y, Nakamura S, Ue M, et al. 2001 J. Am. Chem. Soc. 123 11708
[28] Leung K and Tenney C M 2013 The Journal of Physical Chemistry C 117 24224
[29] Wang D, He T, Wang A, et al. 2023 Advanced Functional Materials 33 2212342
[30] Wang A, Zou Z, Wang D, et al. 2021 Energy Storage Materials 35 595
[31] Stephens P J, Devlin F J, Chabalowski C F, et al. 1994 The Journal of Physical Chemistry 98 11623
[32] Hehre W J, Ditchfield R and Pople J A 1972 The Journal of Chemical Physics 56 2257
[33] Zade S S, Zamoshchik N and Bendikov M 2011 Accounts of Chemical Research 44 14
[34] Manzetti S and Lu T 2013 RSC Advances 3 25881
[35] Marcus R A 1956 The Journal of Chemical Physics 24 966
[36] Marcus R A 1968 Electrochimica Acta 13 995
[37] Pracht P, Bohle F and Grimme S 2020 Phys. Chem. Chem. Phys. 22 7169
[38] Bannwarth C, Ehlert S and Grimme S 2019 J. Chem. Theory Comput. 15 1652
[39] Grimme S 2019 J. Chem. Theory Comput. 15 2847
[40] Bannwarth C, Caldeweyher E, Ehlert S, et al. 2020 WIREs Comput Mol Sci. 11 e1493
[41] Neese F 2018 WIREs Comput Mol Sci. 8 e1327
[42] Weigend F and Ahlrichs R 2005 Phys. Chem. Chem. Phys. 7 3297
[43] Frisch M J, Trucks G W, Schlegel H B, et al. 2009 Gaussian 09 Rev. D.01. Wallingford, CT
[44] Nelsen S F, Blackstock S C and Kim Y 1987 Journal of the American Chemical Society 109 677
[45] Hoffmann J S, O'connor R T, Magne F C, et al. 1956 J. Am. Oil Chem. Soc. 33 410
[46] Caldeweyher E, Bannwarth C and Grimme S 2017 J. Chem. Phys. 147 034112
[47] Dziewonski P M and Grzeszczuk M 2010 J. Phys. Chem. B 114 7158
[48] Winter M Barnett B and Xu K 2018 Chem. Rev. 118 11433
[1] Structural, electronic, and Li-ion mobility properties of garnet-type Li7La3Zr2O12 surface: An insight from first-principles calculations
Jing-Xuan Wang(王靖轩), Bao-Zhen Sun(孙宝珍), Mei Li(李梅), Mu-Sheng Wu(吴木生), and Bo Xu(徐波). Chin. Phys. B, 2023, 32(6): 068201.
[2] Zr-doping stabilizes spinel LiMn2O4 as a low cost long cycle life cathode for lithium ion batteries
Xiang-Gong Zhang(张祥功), Wei Wu(吴伟), Si-Si Zhou(周思思), Fei Huang(黄飞), Shi-Hao Xu(许诗浩), Liang Yin(尹良), Wei Yang(杨伟), and Hong Li(李泓). Chin. Phys. B, 2023, 32(5): 056101.
[3] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[4] Copper ion beam emission in solid electrolyte Rb4Cu16I6.5Cl13.5
Tushagu Abudouwufu(吐沙姑·阿不都吾甫), Xiangyu Zhang (张翔宇), Wenbin Zuo (左文彬), Jinbao Luo(罗进宝), Yueqiang Lan(兰越强), Canxin Tian (田灿鑫), Changwei Zou(邹长伟), Alexander Tolstoguzov, and Dejun Fu(付德君). Chin. Phys. B, 2022, 31(4): 040704.
[5] Enhancing the thermoelectric performance through the mutual interaction between conjugated polyelectrolytes and single-walled carbon nanotubes
Shuxun Wan(万树勋), Zhongming Chen(陈忠明), Liping Hao(郝丽苹), Shichao Wang(王世超), Benzhang Li(李本章), Xiao Li(黎潇), Chengjun Pan(潘成军), and Lei Wang(王雷). Chin. Phys. B, 2022, 31(2): 028104.
[6] Morphologies of a spherical bimodal polyelectrolyte brush induced by polydispersity and solvent selectivity
Qing-Hai Hao(郝清海) and Jie Cheng(成洁). Chin. Phys. B, 2021, 30(6): 068201.
[7] Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives
Fangrong Hu(胡放荣), Mingyang Zhang(张铭扬), Wenbin Qi(起文斌), Jieyun Zheng(郑杰允), Yue Sun(孙悦), Jianyu Kang(康剑宇), Hailong Yu(俞海龙), Qiyu Wang(王其钰), Shijuan Chen(陈世娟), Xinhua Sun(孙新华), Baogang Quan(全保刚), Junjie Li(李俊杰), Changzhi Gu(顾长志), and Hong Li(李泓). Chin. Phys. B, 2021, 30(6): 068202.
[8] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[9] Effect of external electric field on the terahertz transmission characteristics of electrolyte solutions
Jia-Hui Wang(王佳慧), Guo-Yang Wang(王国阳), Xin Liu(刘欣), Si-Yu Shao(邵思雨), Hai-Yun Huang(黄海云), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2021, 30(11): 110204.
[10] A synaptic transistor with NdNiO3
Xiang Wang(汪翔), Chen Ge(葛琛), Ge Li(李格), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(9): 098101.
[11] Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator
Zhao Yan(闫昭), Hongyi Pan(潘弘毅), Junyang Wang(汪君洋), Rusong Chen(陈汝颂), Fei Luo(罗飞), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2020, 29(8): 088201.
[12] Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
Jinbing Zhang(张晋兵), Qiang Wang(王强), Zexian Cao(曹则贤). Chin. Phys. B, 2020, 29(8): 087804.
[13] Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries
Yuqi Li(李钰琦), Yaxiang Lu(陆雅翔), Liquan Chen(陈立泉), Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2020, 29(4): 048201.
[14] High-performance synaptic transistors for neuromorphic computing
Hai Zhong(钟海), Qin-Chao Sun(孙勤超), Guo Li(李果), Jian-Yu Du(杜剑宇), He-Yi Huang(黄河意), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Chen Ge(葛琛), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(4): 040703.
[15] Influence of fluoroethylene carbonate on the solid electrolyte interphase of silicon anode for Li-ion batteries: A scanning force spectroscopy study
Jieyun Zheng(郑杰允), Jialiang Liu(刘家亮), Suijun Wang(王绥军), Fei Luo(罗飞), Liubin Ben(贲留斌), Hong Li(李泓). Chin. Phys. B, 2020, 29(4): 048203.
No Suggested Reading articles found!