Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 058301    DOI: 10.1088/1674-1056/adbd16
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Protein aging dynamics: A perspective from non-equilibrium coarse-grained models

Yue Shan(单月)1, Chun-Lai Ren(任春来)1,2,†, and Yu-Qiang Ma(马余强)1,2
1 National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
2 Hefei National Laboratory, Hefei 230088, China
Abstract  The aging of biomolecular condensates has been implicated in the pathogenesis of various neurodegenerative diseases, characterized by a transition from a physiologically liquid-like state to a pathologically ordered structure. However, the mechanisms governing the formation of these pathological aggregates remain poorly understood. To address this, the present study utilizes coarse-grained molecular dynamics simulations based on Langevin dynamics to explore the structural, dynamical, and material property changes of protein condensates during the aging process. Here, we further develop a non-equilibrium simulation algorithm that not only captures the characteristics of time-dependent amount of aging beads but also reflects the structural information of chain-like connections between aging beads. Our findings reveal that aging induces compaction of the condensates, accompanied by a decrease in diffusion rates and an increase in viscosity. Further analysis suggests that the heterogeneous diffusivity within the condensates may drive the aging process to initiate preferentially at the condensate surface. Our simulation results align with the experimental phenomena and provide a clear physical picture of the aging dynamics.
Keywords:  protein condensates      aging      coarse-grained simulation      liquid-to-solid transition  
Received:  04 January 2025      Revised:  09 February 2025      Accepted manuscript online:  06 March 2025
PACS:  83.10.Mj (Molecular dynamics, Brownian dynamics)  
  87.15.H- (Dynamics of biomolecules)  
  87.15.km (Protein-protein interactions)  
  87.15.nr (Aggregation)  
Fund: We are grateful to the High-Performance Computing Center (HPCC) of Nanjing University for the numerical calculations in this paper on its blade cluster system. This work is supported by the National Key Research and Development Program of China (Grant No. 2022YFA1405000), the National Natural Science Foundation of China (Grant Nos. 12274212, 12347102, and 12174184), and Innovation Program for Quantum Science and Technology (Grant No. 2024ZD0300101).
Corresponding Authors:  Chun-Lai Ren     E-mail:  chunlair@nju.edu.cn

Cite this article: 

Yue Shan(单月), Chun-Lai Ren(任春来), and Yu-Qiang Ma(马余强) Protein aging dynamics: A perspective from non-equilibrium coarse-grained models 2025 Chin. Phys. B 34 058301

[1] Protter D S and Parker R 2016 Trends Cell Biol. 26 668
[2] Gall J G 2000 Annu. Rev. Cell Dev. Biol. 16 273
[3] Daniel S W L, Strom A R and Brangwynne C P 2022 APL Bioeng. 6 021503
[4] Li P, Banjade S, Cheng H C, Soyeon K, Chen B, Guo L, Liaguno M, Hollingsworth J V, King D S, Banani S F, Russo P S, Jiang Q X, Nixon B T and Rosen M K 2012 Nature 483 336
[5] Zeng M, Shang Y, Araki Y, Guo T, Huganir R L and Zhang M 2016 Cell 166 1163
[6] Brangwynne C P, Mitchison T J and Hyman A A 2011 Proc. Natl. Acad. Sci. USA 108 4334
[7] Yang P, Mathieu C, Kolaitis R M, Zhang P, Messing J, Yurtsever U, Yang Z, Wu J, Li Y, Pan Q, Yu J, Martin E W, Mittag T, Kim H J and Taylor J P 2020 Cell 181 325
[8] Lindström M S 2009 Biochem. Biophys. Res. Commun. 379 167
[9] Iborra F J, Jackson D A and Cook P R 2001 Science 293 1139
[10] Brangwynne C P, Eckmann C R, Courson D S, Rybarska A, Hoege C, Gharakhani J, Julicher F and Hyman A A 2009 Science 324 1729
[11] Hyman A A, Christoph A W and Frank J 2014 Annu. Rev. Cell Dev. Biol. 30 39
[12] Zhang H, Ji X, Li P, Liu C, Lou J, Wang Z, Wen W, Xiao Y, Zhang M and Zhu X 2020 Sci. China Life Sci. 63 953
[13] Alberti S, Gladfelter A and Mittag T 2019 Cell 176 419
[14] Wang J, Choi J M, Holehouse A S, Lee H, Zhang X, Jahnel M, Maharana S, Lemaitre R, Pozniakovsky A, Drechsel D, Poser I, Pappu R V, Alberti S and Hyman A A 2018 Cell 174 688
[15] Bah A, Vernon R M, Siddiqui Z, Krzeminski M, Muhandiram R, Zhao C, Sonenberg N, Kay L E and Forman-Kay J D 2015 Nature 519 106
[16] Gupta V, Nath S and Chand S 2002 Indian J. Biotechnol 1 87
[17] Conicella A E, Zerze G H, Mittal J and Fawzi N L 2016 Structure 24 1537
[18] Vernon R M, Chong P A, Tsang B, Kim T H, Bah A, Farber P, Lin H and Forman-Kay J D 2018 eLife 7 e31486
[19] Harmon T S, Holehouse A S, Rosen M K and Pappu R V 2017 eLife 6 e30294
[20] Alberti S and Hyman A A 2021 Nat. Rev. Mol. Cell Biol. 22 196
[21] Eisenberg D S and Michael R S 2017 Annu. Rev. Biochem. 86 69
[22] Tan R, Xia K, Xun D, ZongWand Yu Y 2023 Chin. Phys. B 32 128703
[23] Patel A, Lee H O, Jawerth L, Maharana S, Jahnel M, Hein M Y, Stoynov S, Mahamid J, Saha S, Franzmann T M, Pozniakovski A, Poser I, Maghelli N, Royer L A,Weigert M, Myers EW, Grill S, Drechsel D, Hyman A A and Alberti S 2015 Cell 162 1066
[24] Portz B, Lee B L and Shorter J 2021 Trends Biochem. Sci. 46 550
[25] Murakami T, Qamar S, Lin J Q, Schierle G S K, Rees E, Miyashita A, Costa A R, Dodd R B, Chan F T S, Michel C H, Kronenberg-Versteeg D, Li Y, Yang S,Wakutani Y, MeadowsW, Ferry R R, Dong L, Tartaglia G G, Favrin G, Lin W, Dickson D W, Zhen M, Ron D, Schmitt-Ulms G, Fraser P E, Shneider N A, Holt C, Vendruscolo M, Kaminski C F and George-Hyslop P S 2015 Neuron 88 678
[26] Zhang H 2020 Science 370 1271
[27] Ray S, Singh N, Kumar R, Patel K, Pandey S, Datta D, Mahato J, Panigrahi R, Navalkar A, Mehra S, Gadhe L, Chatterjee D, Sawner A S, Maiti S, Bhatia S, Gerez J A, Chowdhury A, Kumar A, Padinhateeri R, Riek R, Krishnamoorthy G and Maji S K 2020 Nat. Chem. 12 705
[28] Pantoja-Uceda D, Stuani C, Laurents D V, McDermott A E, Buratti E and Mompean M 2021 PLoS Biol. 19 e3001198
[29] Emmanouilidis L, Bartalucci E, Kan Y, Ijavi M, Perez M E, Afanasyev P, Boehringer D, Zehnder J, Parekh S H, Bonn M, Michaels T C T, Wiegand T and Allain F H T 2024 Nat. Chem. Biol. 20 1044
[30] Wu M, Ma H, Fang H, Yang L and Lei X 2023 Chin. Phys. B 32 018701
[31] Fatafta H, Khaled M, OwenMC, Sayyed-Ahmad A and Strodel B 2021 Proc. Natl. Acad. Sci. USA 118 e2106210118
[32] Tejedor A R, Sanchez-Burgos I, Estevez-Espinosa M, Garaizar A, Collepardo-Guevara R, Ramirez J and Espinosa J R 2022 Nat. Commun. 13 5717
[33] Ranganathan S and Shakhnovich E 2022 Biophys. J. 121 2751
[34] Espinosa J R, Garaizar A, Vega C, Frenkel D and Collepardo-Guevara R 2019 J. Chem. Phys. 150 224510
[35] Ruff K M, Dar F and Pappu R V 2021 Proc. Natl. Acad. Sci. USA 118 e2017184118
[36] Farag M, Borcherds W M, Bremer A, Mittag T and Pappu R V 2023 Nat. Commun. 14 5527
[37] Biswas S and Potoyan D A 2024 PRX Life 2 023011
[38] Garaizar A, Espinosa J R, Joseph J A, Krainer G, Shen Y, Knowles T P J and Collepardo-Guevara R 2022 Proc. Natl. Acad. Sci. USA 119 e2119800119
[39] Blazquez S, Sanchez-Burgos I, Ramirez J, Higginbotham T, Conde M M, Collepardo-Guevara R, Tejedor A R and Espinosa J R 2023 Adv. Sci. 10 2207742
[40] Tejedor A R, Collepardo-Guevara R, Ramírez J and Espinosa J R 2023 J. Phys. Chem. B 127 4441
[41] Shen Y, Chen A, Wang W, Shen Y, Rugger F S, Aime S, Wang Z, Qamar S, Espinosa J R, Garaizar A, Georgr-Hyslop P S, Collepardo- Guevara R, Weitz D A, Vigolo D and Knowles T P J 2023 Proc. Natl. Acad. Sci. USA 120 e2301366120
[42] Luo F, Gui X, Zhou H, Gu J, Li Y, Liu X, Zhao M, Li D, Li X and Liu C 2018 Nat. Struct. Mol. Biol. 25 341
[43] Hughes M P, Michael R S, Boyer D R, Goldschmidt L, Rodriguez J A, Cascio D, Chong L, Gonen T and Eisenberg D S 2018 Science 359 698
[44] Ren C L, Shan Y, Zhang P, Ding H M and Ma Y Q 2022 Sci. Adv. 8 eabo7885
[45] Murray D, Kato M, Lin Y, Thurber K R, Hung I, Mcknight S L and Tycko R 2017 Cell 171 615
[46] Zhang Y, Xu B, Weiner B G, Meir Y and Wingreen N S 2021 eLife 10 e62403
[47] Espinosa J R, Garaizar A, Vega C, Frenkel D and Collepardo-Guevara R 2019 J. Chem. Phys. 150 224510
[48] Plimpton S 1995 J. Comput. Phys. 117 1
[49] Lee K H, Zhang P, Kim H J, Mitrea D M, Sarkar M, Freibaum B D, Cika J, Coughlin M, Messing J, Molliex A, Maxwell B A, Kim N C, Temirov J, Moore J, Kolaitis R H, Shaw T L, Bai B, Peng J, Kriwacki R W and Taylor J P 2016 Cell 167 774
[50] Hu G, Song H, Chen X and Li J Y 2024 J. Phys. Chem. Lett. 15 8315
[51] Takaki R and Thirumalai D 2024 Proc. Natl. Acad. Sci. USA 121 e2409973121
[52] Zhang Y, Pyo A G, Kliegman R, Jiang Y, Brangwynne C P, Stone H A and Wingreen N S 2024 eLife 12 RP91680
[53] Dar F, Cohen S R, Mitrea D M, Phillips A H, Nagy G, LeiteWC, Stanley C B, Choi J M, Kriwacki R W and Pappu R V 2024 Nat. Commun. 15 3413
[54] Mathur A, Ghosh R and Nunes-Alves A 2024 J. Chem. Inf. Model. 64 1549
[55] Rubinstein M and Colby R H 2003 Polymer Physics (New York: Oxford University Press) p. 23
[56] Cao X Z, Merlitz H and Forest M G 2019 J. Phys. Chem. Lett. 10 4968
[57] Ramírez J, Sukumaran S K, Vorselaars B and Likhtman A E 2010 J. Chem. Phys. 133 154103
[58] Likhtman A E 2012 Polymer Science: A Comprehensive Reference 1 133
[59] Chandler D 1987 Mechanics (Oxford: Oxford University Press) 5 11
[60] Likhtman A E 2005 Macromolecules 38 6128
[61] Tan Y, Chen Y, Liu X, Tang Y, Lao Z and Wei G 2023 Int. J. Biol. Macromol. 241 124659
[62] Soustelle L, Aimond F, Lpez-Andrs C, Brugioti V, Raoul C and Layalle S 2023 J. Neurosci. 43 8058
[1] Ultracold atomic absorption imaging system in high magnetic fields
Yuying Chen(陈玉莹), Zhengxi Zhang(张正熙), Hongmian Shui(税鸿冕), Yun Liang(梁芸), Fansu Wei(魏凡粟), and Xiaoji Zhou(周小计). Chin. Phys. B, 2025, 34(5): 053303.
[2] Impact of free electron laser coherence on imaging quality
Shuang Wei(魏爽), Shuang Gong(龚爽), Yang Bu(步扬), and Zi-Jian Song(宋子健). Chin. Phys. B, 2025, 34(5): 054201.
[3] Multi-parameter ultrasound imaging for musculoskeletal tissues based on a physics informed generative adversarial network
Pengxin Wang(王鹏鑫), Heyu Ma(马贺雨), Tianyu Liu(刘天宇), Chengcheng Liu(刘成成), Dan Li(李旦), and Dean Ta(他得安). Chin. Phys. B, 2025, 34(4): 044301.
[4] Signal estimation bias in x-ray dark-field imaging using dual phase grating interferometer
Zhi-Li Wang(王志立), Zun Zhang(张尊), Heng Chen(陈恒), and Xin Ge(葛昕). Chin. Phys. B, 2025, 34(3): 038701.
[5] Lamb wave TDTE super-resolution imaging assisted by deep learning
Liu-Jia Sun(孙刘家), Qing-Bang Han(韩庆邦), and Qi-Lin Jin(靳琪琳). Chin. Phys. B, 2025, 34(1): 014301.
[6] A large language model-powered literature review for high-angle annular dark field imaging
Wenhao Yuan(袁文浩), Cheng Peng(彭程), and Qian He(何迁). Chin. Phys. B, 2024, 33(9): 098703.
[7] High-quality ghost imaging based on undersampled natural-order Hadamard source
Kang Liu(刘炕), Cheng Zhou(周成), Jipeng Huang(黄继鹏), Hongwu Qin(秦宏伍), Xuan Liu(刘轩), Xinwei Li(李鑫伟), and Lijun Song(宋立军). Chin. Phys. B, 2024, 33(9): 094204.
[8] In-situ deposited anti-aging TiN capping layer for Nb superconducting quantum circuits
Hao-Ran Tao(陶浩然), Lei Du(杜磊), Liang-Liang Guo(郭亮亮), Yong Chen(陈勇), Hai-Feng Zhang(张海峰), Xiao-Yan Yang(杨小燕), Guo-Liang Xu(徐国良), Chi Zhang(张 驰), Zhi-Long Jia(贾志龙), Peng Duan(段鹏), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(9): 090310.
[9] Performance optimization of the neutron-sensitive image intensifier used in neutron imaging
Jinhao Tan(谭金昊), Yushou Song(宋玉收), Jianrong Zhou(周健荣), Wenqin Yang(杨文钦), Xingfen Jiang(蒋兴奋), Jie Liu(刘杰), Chaoyue Zhang(张超月), Xiaojuan Zhou(周晓娟), Yuanguang Xia(夏远光), Shulin Liu(刘术林), Baojun Yan(闫保军), Hui Liu(刘辉), Songlin Wang(王松林), Yubin Zhao(赵豫斌), Jian Zhuang(庄建), Zhijia Sun(孙志嘉), and Yuanbo Chen(陈元柏). Chin. Phys. B, 2024, 33(8): 086102.
[10] Cryogenic transmission electron microscopy on beam-sensitive materials and quantum science
Gang Wang(王刚) and Jun-Hao Lin(林君浩). Chin. Phys. B, 2024, 33(8): 086801.
[11] Subtraction of liposome signals in cryo-EM structural determination of protein-liposome complexes
Shouqing Li(李首卿), Ming Li(李明), Yumei Wang(王玉梅), and Xueming Li(李雪明). Chin. Phys. B, 2024, 33(8): 088702.
[12] Unveiling the in-plane anisotropic dielectric waveguide modes in α-MoO3 flakes
Ying Liao(廖莹) and Jianing Chen(陈佳宁). Chin. Phys. B, 2024, 33(7): 078401.
[13] High-visibility ghost imaging with phase-controlled discrete classical light sources
Xueying Wu(仵雪滢), Yue Zhao(赵岳), and Liming Li(李利明). Chin. Phys. B, 2024, 33(7): 074202.
[14] Performance enhancement of a viscoelastic bistable energy harvester using time-delayed feedback control
Mei-Ling Huang(黄美玲), Yong-Ge Yang(杨勇歌), and Yang Liu(刘洋). Chin. Phys. B, 2024, 33(6): 060203.
[15] Design of compact integrated diamond nitrogen-vacancy center quantum probe
Sheng-Kai Xia(夏圣开), Wen-Tao Lu(卢文韬), Xu-Tong Zhao(赵旭彤), Ya-Wen Xue(薛雅文), Zeng-Bo Xu(许增博), Shi-Yu Ge(葛仕宇), Yang Wang(汪洋), Lin-Yan Yu(虞林嫣), Yu-Chen Bian(卞雨辰), Si-Han An(安思瀚), Bo Yang(杨博), Jian-Jun Xiang(向建军), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(5): 054202.
No Suggested Reading articles found!