Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 056101    DOI: 10.1088/1674-1056/acb919
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Zr-doping stabilizes spinel LiMn2O4 as a low cost long cycle life cathode for lithium ion batteries

Xiang-Gong Zhang(张祥功)1, Wei Wu(吴伟)2, Si-Si Zhou(周思思)1,†, Fei Huang(黄飞)2, Shi-Hao Xu(许诗浩)2, Liang Yin(尹良)2,3,‡, Wei Yang(杨伟)2,§, and Hong Li(李泓)2,3
1 Wuhan Institute of Marine Electric Propulsion, Wuhan 430064, China;
2 Tianmu Lake Institute of Advanced Energy Storage Technologies Co., Ltd., Liyang 213300, China;
3 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The present commercial spinel LiMn$_{2}$O$_{4}$ delivers only 90 mAh/g-115 mAh/g, far lower than the theoretical specific capacity. It degrades fast caused by the Jahn-Teller effect, Mn dissolution and related side reactions that consume Li inventory. In this work, Zr doping is employed to improve the structural stability and electrochemical performance of spinel LiMn$_{2}$O$_{4}$. Li$_{1.06}$Mn$_{1.94-x}$Zr$_{x}$O$_{4}$ ($x = 0$, 0.01, 0.02, 0.04) have been successfully synthesized by a simple solid-state reaction method and evaluated as cathode for lithium ion batteries (LIB). Li$_{1.06}$Mn$_{1.92}$Zr$_{0.02}$O$_{4}$ is superior cathode material with a high capacity of 122 mAh/g at 1-C rate; long cycle stability, 98.39% retention after 100 cycles at 1-C rate, excellent high rate performance 107.1 mAh/g at 10-C rate, and high temperature performance 97.39% retention after 60 cycles. These are thought to be related to Zr doping effectively stabilizing the spinel LiMn$_{2}$O$_{4}$, by forming stronger Zr-O bonds in the octahedron, suppressing the Jahn-Teller effect, thus improving electrochemical performance.
Keywords:  lithium battery      cathode      LiMn2O4      cycle life  
Received:  30 December 2022      Revised:  30 January 2023      Accepted manuscript online:  06 February 2023
PACS:  61.50.-f (Structure of bulk crystals)  
  61.66.Fn (Inorganic compounds)  
  82.47.Aa (Lithium-ion batteries)  
  82.45.Fk (Electrodes)  
Fund: Project supported by research on high power flexible battery in all sea depth (Grant No. 2020-XXXX-XX-246-00).
Corresponding Authors:  Si-Si Zhou, Liang Yin, Wei Yang     E-mail:  zhousisi18@126.com;lyin@iphy.ac.cn;billwyang@163.com

Cite this article: 

Xiang-Gong Zhang(张祥功), Wei Wu(吴伟), Si-Si Zhou(周思思), Fei Huang(黄飞), Shi-Hao Xu(许诗浩), Liang Yin(尹良), Wei Yang(杨伟), and Hong Li(李泓) Zr-doping stabilizes spinel LiMn2O4 as a low cost long cycle life cathode for lithium ion batteries 2023 Chin. Phys. B 32 056101

[1] Wang F, Harindintwali J D and Yuan Z, et al. 2021 Innovation 2 100180
[2] Lin R and Ren J 2020 Renewable Energy and Sustainable Development 6 3
[3] Tarascon J M and Armand M 2001 Nature 414 359
[4] Thackeray M M and Amine K 2021 Nature Energy 6 566
[5] Eriksson T 2001 LiMn2O4 as a Li-Ion Battery Cathode: From Bulk to Electrolyte Interface (Uppsala Universitet)
[6] Thackeray M M 1997 Manganese oxides for lithium batteries, Vol. 25 pp. 1-71
[7] Yoshio M, Noguchi H, Xia Y and Ikeda K 1996 Denki Kagaku 64 123
[8] Xia Y and Yoshio M 1995 Journal of Power Sources 57 125
[9] Xia Y and Yoshio M 1997 Journal of Power Sources 66 129
[10] Xia Y, Hideshima Y, Kumada N, Nagano M and Yoshio M 1998 Journal of Power Sources 74 24
[11] Xia Y and Yoshio M 2003 Lithium Batteries: Science and Technology, eds. Nazri G A and Pistoia G (Boston, MA: Springer US) pp. 361-380
[12] Tang D, Sun Y, Yang Z, Ben L, Gu L and Huang X 2014 Chemistry of Materials 26 3535
[13] Sun Z, Li M, Xiao B, Liu X, Lin H, Jiang B, Liu H, Li M, Peng D L and Zhang Q 2022 eTransportation 14 100203
[14] Wang R, Chen X, Huang Z, Yang J, Liu F, Chu M, Liu T, Wang C, Zhu W, Li S, Li S, Zheng J, Chen J, He L, Jin L, Pan F and Xiao Y 2021 Nat. Commun. 12 3085
[15] Chudzik K, Świȩtosławski M, Bakierska M, Kubicka M, Natkański P, Kawałko J and Molenda M 2021 Electrochimica Acta 373 137901
[16] Ramana C V, Massot M and Julien C M 2005 Surf. Interface Anal. 37 412
[17] Jiang B, Li J, Luo B, Yan Q, Li H, Liu L, Chu L, Li Y, Zhang Q and Li M 2021 Journal of Energy Chemistry 60 564
[18] Wen W, Ju B, Wang X, Wu C, Shu H and Yang X 2014 Electrochimica Acta 147 271
[19] Ji H, Ben L, Wang S, Liu Z, Monteiro R, Ribas R, Yu H, Gao P, Zhu Y and Huang X 2021 ACS Appl. Energy Mater. 4 8350
[20] Yu Y, Xiang M, Guo J, Su C, Liu X, Bai H, Bai W and Duan K 2019 Journal of Colloid and Interface Science 555 64
[21] Liu X, Wang J, Zhang J and Yang S 2006 Journal of Materials Science: Materials in Electronics 17 865
[22] Ramogayana B, Maenetja K P and Ngoepe P E 2022 Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie 40 22
[23] Ram P, Singhal R, Choudhary G and Sharma R K 2017 Journal of Electroanalytical Chemistry 802 94
[24] Guohua L, Ikuta H, Uchida T and Wakihara M 1996 Journal of The Electrochemical Society 143 178
[25] Fu Y, Jiang H, Hu Y, Dai Y, Zhang L and Li C 2015 Industrial and Engineering Chemistry Research 54 3800
[26] Hou Y, Chang K, Tang H, Li B, Hou Y and Chang Z 2019 Electrochimica Acta 319 587
[27] Li Y, Zhu G, Ran Q, Liu J, Zhou Y, Zhao M, Cao P and Zhao H 2021 International Journal of Electrochemical Science 16 1
[28] Zhao H, Li F, Bai X, Wu T, Wang Z, Li Y and Su J 2018 Materials 11 1302
[29] Zhao H, Bai X, Wang J, Li D, Li B, Wang Y, Dong L, Liu B and Komarneni S 2018 Materials 11 1558
[30] Zhao H, Liu S, Wang Z, Cai Y, Tan M and Liu X 2016 Electrochimica Acta 199 18
[31] Li L, Fu L, Li M, Wang C, Zhao Z, Xie S, Lin H, Wu X, Liu H, Zhang L, Zhang Q and Tan L 2022 Journal of Energy Chemistry 71 588
[32] Todorov Y M, Hideshima Y, Noguchi H and Yoshio M 1999 Journal of Power Sources 77 198
[33] Julien C 2003 Solid State Ionics 159 345
[34] Murali N, Margarette S J and Veeraiah V 2016 IOP Conference Series: Materials Science and Engineering 149 012193
[35] Ammundsen B, Burns G R, Islam M S, Kanoh H and Roziére J 1999 J. Phys. Chem. B 103 5175
[36] Baddour-Hadjean R and Pereira-Ramos J P 2010 Chem. Rev. 110 1278
[1] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[2] Temporal response of laminated graded-bandgap GaAs-based photocathode with distributed Bragg reflection structure: Model and simulation
Zi-Heng Wang(王自衡), Yi-Jun Zhang(张益军), Shi-Man Li(李诗曼), Shan Li(李姗), Jing-Jing Zhan(詹晶晶), Yun-Sheng Qian(钱芸生), Feng Shi(石峰), Hong-Chang Cheng(程宏昌), Gang-Cheng Jiao(焦岗成), and Yu-Gang Zeng(曾玉刚). Chin. Phys. B, 2022, 31(9): 098505.
[3] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[4] Probing the improved stability for high nickel cathode via dual-element modification in lithium-ion
Fengling Chen(陈峰岭), Chaozhi Zeng(曾朝智), Chun Huang(黄淳), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(7): 078101.
[5] Mg-doped layered oxide cathode for Na-ion batteries
Yuejun Ding(丁月君), Feixiang Ding(丁飞翔), Xiaohui Rong(容晓晖), Yaxiang Lu(陆雅翔), and Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2022, 31(6): 068201.
[6] Enhancement of electrochemical performance in lithium-ion battery via tantalum oxide coated nickel-rich cathode materials
Fengling Chen(陈峰岭), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Jing Xie (解婧),Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(5): 058101.
[7] Pressure dependence of the thermal stability in LiMn2O4
Yan Zeng(曾彦), Hao Liang(梁浩), Shixue Guan(管诗雪), Junpu Wang(王俊普), Wenjia Liang(梁文嘉), Mengyang Huang(黄梦阳), and Fang Peng(彭放). Chin. Phys. B, 2022, 31(1): 016104.
[8] In situ formed FeS2@CoS cathode for long cycling life lithium-ion battery
Xin Wang(王鑫), Bojun Wang(汪博筠), Jiachao Yang(杨家超), Qiwen Ran(冉淇文), Jian Zou(邹剑), Pengyu Chen(陈鹏宇), Li Li(李莉), Liping Wang(王丽平), and Xiaobin Niu(牛晓滨). Chin. Phys. B, 2021, 30(8): 088201.
[9] Electron density distribution of LiMn2O4 cathode investigated by synchrotron powder x-ray diffraction
Tongtong Shang(尚彤彤), Dongdong Xiao(肖东东), Qinghua Zhang(张庆华), Xuefeng Wang(王雪锋), Dong Su(苏东), and Lin Gu(谷林). Chin. Phys. B, 2021, 30(7): 078202.
[10] Light-controlled pulsed x-ray tube with photocathode
Hao Xuan(宣浩), Yong-An Liu(刘永安), Peng-Fei Qiang(强鹏飞), Tong Su(苏桐), Xiang-Hui Yang(杨向辉), Li-Zhi Sheng(盛立志), and Bao-Sheng Zhao(赵宝升). Chin. Phys. B, 2021, 30(11): 118502.
[11] Suppressing transition metal dissolution and deposition in lithium-ion batteries using oxide solid electrolyte coated polymer separator
Zhao Yan(闫昭), Hongyi Pan(潘弘毅), Junyang Wang(汪君洋), Rusong Chen(陈汝颂), Fei Luo(罗飞), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2020, 29(8): 088201.
[12] Computational screening of doping schemes for LiTi2(PO4)3 as cathode coating materials
Yu-Qi Wang(王宇琦), Xiao-Rui Sun(孙晓瑞), Rui-Juan Xiao(肖睿娟), Li-Quan Chen(陈立泉). Chin. Phys. B, 2020, 29(3): 038202.
[13] Revealing the inhomogeneous surface chemistry on the spherical layered oxide polycrystalline cathode particles
Zhi-Sen Jiang(蒋之森), Shao-Feng Li(李少锋), Zheng-Rui Xu(许正瑞), Dennis Nordlund, Hendrik Ohldag, Piero Pianetta, Jun-Sik Lee, Feng Lin(林锋), Yi-Jin Liu(刘宜晋). Chin. Phys. B, 2020, 29(2): 026103.
[14] Plasma simulation to analyze velocity distribution characteristics of pseudospark-sourced electron beam
Hai-Long Li(李海龙)†, Chen-Fei Hu(胡陈飞), Che Xu(徐彻), Yong Yin(殷勇), Bin Wang(王彬), Lin Meng(蒙林), and Mao-Yan Wang(王茂琰). Chin. Phys. B, 2020, 29(10): 105101.
[15] Fluctuation of arc plasma in arc plasma torch with multiple cathodes
Zelong Zhang(张泽龙), Cheng Wang(王城), Qiang Sun(孙强), Weidong Xia(夏维东). Chin. Phys. B, 2019, 28(9): 095201.
No Suggested Reading articles found!