Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 053401    DOI: 10.1088/1674-1056/adbdc0
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Fragmentation dynamics of nitric oxide induced by low-energy heavy ions

Zhixin Li(李志欣)1,2, Kaizhao Lin(林楷钊)2, Xiaolong Zhu(朱小龙)2,3,4,†, Zhiliang Li(李志亮)1,‡, Hang Yuan(苑航)2, Yong Gao(高永)2,3, Dalong Guo(郭大龙)2,3, Dongmei Zhao(赵冬梅)2,3, Shaofeng Zhang(张少锋)2,3,4, and Xinwen Ma(马新文)2,3,4
1 College of Physical Science and Technology, Hebei University, Baoding 071002, China;
2 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
3 State Key Laboratory of Heavy Ion Science and Technology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We study the fragmentation of NOq+ (q=2,3) molecular ions produced by collisions between 96 keV O6+ ions and neutral nitric oxide (NO) molecules, using the cold target recoil ion momentum spectrometer (COLTRIMS). The kinetic energy release (KER) for various dissociation channels is obtained. For the channel NO2+N++O+, double-electron capture followed by autoionization of the projectile ions is the dominant process, which can be explained by the recapture of loosely bound electrons into highly excited states of the target. For NO3+ trication, two dissociation channels, i.e., (a) N++O2+ and (b) N2++O+, are observed, where channel (b) is the dominant channel. Moreover, for dissociation channels originating from the same parent molecular ion, the dissociation channel with a higher charge for the oxygen ion fragment exhibits a higher most probable KER, which is consistent with studies of CO fragmentation by Rajput et al. Additionally, it is observed that as capture stability increases, the average KER shifts to higher values.
Keywords:  heavy ion collisions      molecular fragmentation      cold target recoil ion momentum spectroscopy  
Received:  12 January 2025      Revised:  26 February 2025      Accepted manuscript online:  07 March 2025
PACS:  34.50.Gb (Electronic excitation and ionization of molecules)  
  34.80.Ht (Dissociation and dissociative attachment)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602500), the National Natural Science Foundation of China (Grant Nos. 11934004, 12064040, and 11974358), and Strategic Key Research Program of the Chinese Academy of Sciences (Grant No. XDB34020000).
Corresponding Authors:  Xiaolong Zhu, Zhiliang Li     E-mail:  zhuxiaolong@impcas.ac.cn;phd-lzl@hbu.edu.cn

Cite this article: 

Zhixin Li(李志欣), Kaizhao Lin(林楷钊), Xiaolong Zhu(朱小龙), Zhiliang Li(李志亮), Hang Yuan(苑航), Yong Gao(高永), Dalong Guo(郭大龙), Dongmei Zhao(赵冬梅), Shaofeng Zhang(张少锋), and Xinwen Ma(马新文) Fragmentation dynamics of nitric oxide induced by low-energy heavy ions 2025 Chin. Phys. B 34 053401

[1] Ma J, Li H, Lin K, Song Q, Ji Q, Zhang W, Li H, Sun F, Qiang J, Lu P, Gong X, Zeng H and Wu J 2018 Phys. Rev. A 97 063407
[2] Rajput J, De S, Roy A and Safvan C P 2006 Phys. Rev. A 74 032701
[3] Kaneyasu T, Azuma T and Okuno K 2005 J. Phys. B: Atom. Mol. Opt. Phys. 38 1341
[4] Wells E, Krishnamurthi V, Carnes K, Johnson N G, Baxter H D, Moore D, Bloom K M, Barnes B, Tawara H and Ben-Itzhak I 2005 Phys. Rev. A 72 022726
[5] Rajput J and Safvan C 2007 Phys. Rev. A 75 062709
[6] Folkerts H, Schlathölter T, Hoekstra R and Morgenstern R 1997 JJ. Phys. B: Atom. Mol. Opt. Phys. 30 5849
[7] Neumann N, Hant D, Schmidt L P H, Titze J, Jahnke T, Czasch A, Schöffler M S, Kreidi K, Jagutzki O, Schmidt-Böcking H and Dörner R 2010 Phys. Rev. Lett. 104 103201
[8] Khan A, Tribedi L C and Misra D 2015 Phys. Rev. A 92 030701
[9] Krishnakumar E, Krishnamurthi V, Rajgara F A, Raheja U T and Mathur D 1991 Phys. Rev. A 44 R4098
[10] Wales B, Motojima T, Matsumoto J, Long Z, Liu W K, Shiromaru H and Sanderson J 2012 J. Phys. B: Atom. Mol. Opt. Phys. 45 045205
[11] Jana M R, Ghosh P N, Ray B, Bapat B, Kushawaha R K, Saha K, Prajapati I A and Safvan C 2014 Euro. Phys. J. D 68 1
[12] Shen Z, Wang E, Gong M, Shan X and Chen X 2016 The Journal of Chemical Physics 145 234303
[13] Kübel M, Alnaser A S, Bergues B, Pischke T, Schmidt J, Deng Y, Jendrzejewski C, Ullrich J, Paulus G, Azzeer A, et al. 2014 New J. Phys. 16 065017
[14] Taylor S, Eland J H D and Hochlaf M 2006 The Journal of Chemical Physics 124 204319
[15] Xu H, Okino T and Yamanouchi K 2009 The Journal of Chemical Physics 131 151102
[16] Xu H, Okino T and Yamanouchi K 2009 Chemical Physics Letters 469 255
[17] Li Y, Xu S, Guo D, Jia S, Jiang X, Zhu X and Ma X 2019 The Journal of Chemical Physics 150 144311
[18] Castrovilli M, Trabattoni A, Bolognesi P, O’Keeffe P, Avaldi L, Nisoli M, Calegari F and Cireasa R 2018 The Journal of Physical Chemistry Letters 9 6012
[19] Zhao J, Song T, Xu M, Quan Q, Siu K M, Hopkinson A C and Chu I K 2012 Physical Chemistry Chemical Physics 14 8723
[20] Zhu X, Ma X, Li J, Schmidt M, Feng W, Peng H, Xu J, Zschornack G, Liu H, Zhang T, et al. 2019 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 460 224
[21] Ma X, Zhang R, Zhang S, Zhu X, Feng W, Guo D, Li B, Liu H, Li C, Wang J, et al. 2011 Phys. Rev. A 83 052707
[22] Xu J, Xu C, Zhang R, Zhu X, Feng W, Gu L, Liang G, Guo D, Gao Y, Zhao D, et al. 2021 The Astrophysical Journal Supplement Series 253 13
[23] Yuan H, Xu S, Wang E, Xu J, Gao Y, Zhu X, Guo D, Ma B, Zhao D, Zhang S, et al. 2022 The Journal of Physical Chemistry Letters 13 7594
[24] Zhu X, Cui S, Xing D, Xu J, Najjari B, Zhao D, Guo D, Gao Y, Zhang R, Su M, et al. 2024 Chin. Phys. B 33 023401
[25] Cui S, Xing D, Zhu X, Su M, Gao Y, Guo D, Zhao D, Zhang S, Fu Y and Ma X 2024 Chin. Phys. B 33 073401
[26] Barat M and Roncin P 1992 J. Phys. B: Atom. Mol. Opt. Phys. 25 2205
[27] Yuan H, Xu Z, Xu S, Ma C, Zhang Z, Guo D, Zhu X, Zhao D, Zhang S, Yan S, Gao Y, Zhang R and Ma X 2022 Phys. Rev. A 105 022814
[28] Edvardsson D, Lundqvist M, Baltzer P,Wannberg B and Lunell S 1996 Chemical Physics Letters 256 341
[29] Fainelli E, Maracci F, Platania R and Avaldi L 1996 The Journal of Chemical Physics 104 3227
[30] Duley A, Dutta N N, Bagdia C, Tribedi L, Safvan C and Kelkar A 2022 Euro. Phys. J. D 76 162
[1] Studies of K-shell x-ray energy shifts induced by MeV/u heavy ions
Song Zhang-Yong(宋张勇), Yang Zhi-Hu(杨治虎), Shao Jian-Xiong(邵剑雄), Cui Ying(崔莹), Zhang Hong-Qiang(张红强), Ruan Fang-Fang(阮芳芳), Du Juan(杜鹃), Gao Zhi-Min(高志民), Yu De-Yang(于得洋), Chen Xi-Meng(陈熙萌), and Cai Xiao-Hong(蔡晓红). Chin. Phys. B, 2009, 18(4): 1443-1450.
[2] Anisotropic emission of charged mesons and structure characteristic of emission source in heavy ion collisions at 1--2A GeV
Liu Fu-Hu(刘福虎). Chin. Phys. B, 2008, 17(3): 883-895.
[3] Two-pion interferometry at small relative momentum for pion sources with transverse and longitudinal expansions in relativistic heavy ion collisions
Chen Xiao-Fan (陈小凡), Yang Xue-Dong (杨学栋), Han Ling (韩玲). Chin. Phys. B, 2004, 13(3): 341-343.
No Suggested Reading articles found!