Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 094204    DOI: 10.1088/1674-1056/ad62e1
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High-quality ghost imaging based on undersampled natural-order Hadamard source

Kang Liu(刘炕)1, Cheng Zhou(周成)2,†, Jipeng Huang(黄继鹏)2, Hongwu Qin(秦宏伍)1,‡, Xuan Liu(刘轩)3, Xinwei Li(李鑫伟)4, and Lijun Song(宋立军)5,§
1 School of Electronic Information Engineering, Changchun University, Changchun 130022, China;
2 School of Physics, Northeast Normal University, Changchun 130024, China;
3 College of Electronic and Information Engineering, Changchun University of Science and Technology, Changchun 130022, China;
4 Jilin Engineering Laboratory for Quantum Information Technology, Jilin Engineering Normal University, Changchun 130052, China;
5 Changchun Institute of Technology, Changchun 130012, China
Abstract  Improving the speed of ghost imaging is one of the main ways to leverage its advantages in sensitivity and imperfect spectral regions for practical applications. Because of the proportional relationship between image resolution and measurement time, when the image pixels are large, the measurement time increases, making it difficult to achieve real-time imaging. Therefore, a high-quality ghost imaging method based on undersampled natural-order Hadamard is proposed. This method uses the characteristics of the Hadamard matrix under undersampling conditions where image information can be fully obtained but overlaps, as well as deep learning to extract aliasing information from the overlapping results to obtain the true original image information. We conducted numerical simulations and experimental tests on binary and grayscale objects under undersampling conditions to demonstrate the effectiveness and scalability of this method. This method can significantly reduce the number of measurements required to obtain high-quality image information and advance application promotion.
Keywords:  ghost imaging      natural-order Hadamard      deep learning  
Received:  22 May 2024      Revised:  12 July 2024      Accepted manuscript online:  15 July 2024
PACS:  42.30.-d (Imaging and optical processing)  
  42.30.Va (Image forming and processing)  
  42.30.Wb (Image reconstruction; tomography)  
Fund: Project supported by the Science and Technology Development Plan Project of Jilin Province, China (Grant No. 20220204134YY), the National Natural Science Foundation of China (Grant No. 62301140), Project of the Education Department of Jilin Province (Grant Nos. JJKH20231292KJ and JJKH20240242KJ), Program for Science and Technology Development of Changchun City (Grant No. 23YQ11), Innovation and Entrepreneurship Talent Funding Project of Jilin Province (Grant No. 2023RY17), and the Project of Jilin Provincial Development and Reform Commission (Grant No. 2023C042-4).
Corresponding Authors:  Cheng Zhou, Hongwu Qin, Hongwu Qin     E-mail:  zhoucheng91210@163.com;qinhongwu@ccu.edu.cn;ccdxslj@ccu.edu.cn

Cite this article: 

Kang Liu(刘炕), Cheng Zhou(周成), Jipeng Huang(黄继鹏), Hongwu Qin(秦宏伍), Xuan Liu(刘轩), Xinwei Li(李鑫伟), and Lijun Song(宋立军) High-quality ghost imaging based on undersampled natural-order Hadamard source 2024 Chin. Phys. B 33 094204

[1] Shapiro J H 2008 Phys. Rev. A 78 061802
[2] Bromberg Y, Katz O and Silberberg Y 2009 Phys. Rev. A 79 053840
[3] Liu J F, Dong Y, Wang L and Zhao S M 2023 Chin. Phys. B 32 074202
[4] Edgar M P, Gibson G M and Padgett M J 2019 Nat. Photonics 13 13
[5] Gibson G M, Johnson S D and Padgett M J 2020 Opt. Express 28 28190
[6] Fu Q, Bai Y, Tan W, Huang X, Nan S and Fu X 2023 Chin. Phys. B 32 064203
[7] Liu Z Q, Bai Y F, Zou X P F, Zhou L Y, Fu Q and Fu X Q 2023 Chin. Phys. B 32 034210
[8] Wang L and Zhao S 2016 Photon. Res. 4 240
[9] Zhang Z, Ma X and Zhong J 2015 Nat. Commun. 6 6225
[10] Qiu Z, Zhang Z and Zhong J 2020 Opt. Lasers Eng. 134 106301
[11] Sun M J, Meng L T, Edgar M P, Padgett M J and Radwell N 2017 Sci. Rep. 7 3464
[12] Zhou C, Tian T, Gao C, Gong W and Song L 2019 J. Opt. 21 055702
[13] López-García L, Cruz-Santos W, García-Arellano A, Filio-Aguilar P, Cisneros-Martínez J A and Ramos-García R 2022 Opt. Express 30 13714
[14] Sun R, Long J, Ding Y, Kuang J and Xi J 2023 In Photonics MDPI 10 395
[15] Bie S H, Wang C H, Lv R B, Bao Q Q, Fu Q, Meng S Y and Chen X H 2023 Chin. Phys. B 32 128702
[16] Zhang H P, Du K, Zhao C Z, Tang J, Si S Y, Jia W H, Xue L and Li Z L 2023 Sci. Rep. 13 22702
[17] Yu X, Yang F, Gao B, Ran J and Huang X 2020 IEEE Access 8 55773
[18] Wu H, Zhao G, He C, Cheng L and Luo S 2022 Phys. Rev. A 106 053522
[19] Yu Z, Gao C, Wang X Q, Zhao H and Yao Z H 2022 Opt. Laser Technol. 155 108413
[20] Wu H, Zhao G, Wang R, Xiao H, Wang D, Liang J, Cheng L and Liang R 2020 Opt. Lasers Eng. 132 106105
[21] Yu W K and Liu Y M 2019 Sensors 19 5135
[22] Huang H and Han Z 2024 Opt. Commun. 552 130096
[23] Guo H, Wang L and Zhao S M 2022 Chin. Phys. B 31 084201
[24] Li M F, Yan L, Yang R and Liu Y X 2019 Acta Phys. Sin. 68 064202 (in Chinese)
[25] Zhou C, Liu X, Feng Y S, Li X W, Wang G C, Sun H Z, Huang H Y and Song L J 2022 Opt. Lasers Eng. 156 107101
[26] Zhao Y N, Chen L S, Chen L Y, Kong L, Wang C, Ren C, Zhang S H and Cao D Z 2024 arXiv.eess.lV arXiv: 2405.03729
[27] Yu W K 2019 Sensors 19 4122
[28] Huang Y Y, Ou-Yang C, Fang K, Dong Y F, Zhang J, Chen L M and Wu L A 2021 Chin. Phys. B 30 064202
[29] Zhang H, Xia Y and Duan D 2021 Chin. Phys. B 30 124209
[30] Li Y and Duan D 2023 Chin. Phys. B 32 104203
[31] Ronneberger O, Fischer P and Brox T 2015 In Medical image computing and computer-assisted intervention-MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18 pp. 234-241
[32] Jin K H, McCann M T, Froustey E and Unser M 2017 IEEE Trans. Image Process. 26 4509
[33] LeCun Y, Bottou L, Bengio Y and Haffner P 1998 Proc. IEEE 86 2278
[34] Krizhevsky A and Hinton G 2009 Tech. Rep. 001
[35] Hamamci I E, Er S, Simsar E, Sekuboyina A, Gundogar M, Stadlinger B, Mehl A and Menze B 2023 arXiv:2303.06500
[1] A large language model-powered literature review for high-angle annular dark field imaging
Wenhao Yuan(袁文浩), Cheng Peng(彭程), and Qian He(何迁). Chin. Phys. B, 2024, 33(9): 098703.
[2] Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
Xi Wang(王玺), Meng Tang(唐孟), Ming-Xuan Jiang(蒋明璇), Yang-Chun Chen(陈阳春), Zhi-Xiao Liu(刘智骁), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2024, 33(7): 076103.
[3] High-visibility ghost imaging with phase-controlled discrete classical light sources
Xueying Wu(仵雪滢), Yue Zhao(赵岳), and Liming Li(李利明). Chin. Phys. B, 2024, 33(7): 074202.
[4] Image segmentation of exfoliated two-dimensional materials by generative adversarial network-based data augmentation
Xiaoyu Cheng(程晓昱), Chenxue Xie(解晨雪), Yulun Liu(刘宇伦), Ruixue Bai(白瑞雪), Nanhai Xiao(肖南海), Yanbo Ren(任琰博), Xilin Zhang(张喜林), Hui Ma(马惠), and Chongyun Jiang(蒋崇云). Chin. Phys. B, 2024, 33(3): 030703.
[5] Generation of orbital angular momentum hologram using a modified U-net
Zhi-Gang Zheng(郑志刚), Fei-Fei Han(韩菲菲), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2024, 33(3): 034207.
[6] A deep learning method based on prior knowledge with dual training for solving FPK equation
Denghui Peng(彭登辉), Shenlong Wang(王神龙), and Yuanchen Huang(黄元辰). Chin. Phys. B, 2024, 33(1): 010202.
[7] Intensity correlation properties of x-ray beams split with Laue diffraction
Chang-Zhe Zhao(赵昌哲), Shang-Yu Si(司尚禹), Hai-Peng Zhang(张海鹏), Lian Xue(薛莲), Zhong-Liang Li(李中亮), and Ti-Qiao Xiao(肖体乔). Chin. Phys. B, 2024, 33(1): 014102.
[8] Crysformer: An attention-based graph neural network for properties prediction of crystals
Tian Wang(王田), Jiahui Chen(陈家辉), Jing Teng(滕婧), Jingang Shi(史金钢),Xinhua Zeng(曾新华), and Hichem Snoussi. Chin. Phys. B, 2023, 32(9): 090703.
[9] Classification and structural characteristics of amorphous materials based on interpretable deep learning
Jiamei Cui(崔佳梅), Yunjie Li(李韵洁), Cai Zhao(赵偲), and Wen Zheng(郑文). Chin. Phys. B, 2023, 32(9): 096101.
[10] Disruption prediction based on fusion feature extractor on J-TEXT
Wei Zheng(郑玮), Fengming Xue(薛凤鸣), Zhongyong Chen(陈忠勇), Chengshuo Shen(沈呈硕), Xinkun Ai(艾鑫坤), Yu Zhong(钟昱), Nengchao Wang(王能超), Ming Zhang(张明),Yonghua Ding(丁永华), Zhipeng Chen(陈志鹏), Zhoujun Yang(杨州军), and Yuan Pan(潘垣). Chin. Phys. B, 2023, 32(7): 075203.
[11] Optical encryption scheme based on spread spectrum ghost imaging
Jin-Fen Liu(刘进芬), Yue Dong(董玥), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(7): 074202.
[12] Principle of subtraction ghost imaging in scattering medium
Qin Fu(付芹), Yanfeng Bai(白艳锋), Wei Tan(谭威), Xianwei Huang(黄贤伟), Suqin Nan(南苏琴), and Xiquan Fu(傅喜泉). Chin. Phys. B, 2023, 32(6): 064203.
[13] Modeling differential car-following behavior under normal and rainy conditions: A memory-based deep learning method with attention mechanism
Hai-Jian Bai(柏海舰), Chen-Chen Guo(过晨晨), Heng Ding(丁恒), Li-Yang Wei(卫立阳), Ting Sun(孙婷), and Xing-Yu Chen(陈星宇). Chin. Phys. B, 2023, 32(6): 060507.
[14] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[15] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
No Suggested Reading articles found!