1 School of Physics and Electronics Engineering, Shanxi University, Taiyuan 030006, China; 2 State Key Laboratory of Photonics and Communications, School of Electronics, Peking University, Beijing 100871, China; 3 Institute of Carbon-based Thin Film Electronics, Peking University, Taiyuan 030012, China
Abstract Absorption imaging is a fundamental technique for quantitatively extracting information from ultracold atom experiments. Since ultracold atoms are prepared and detected under high magnetic fields, the suitable detuning of the probe light can reach the GHz level compared to zero-field imaging. Therefore, based on the energy level structure of atoms and the requirements of subsequent experiments, we design a high-field imaging system with a large frequency range and good robustness, starting from the rationality of the optical layout design and employing offset locking techniques. This imaging system covers the entire crossover region from Bose-Einstein condensate to Bardeen-Cooper-Schrieffer (BEC-BCS) and realizes free switching between zero-field and high-field imaging. Additionally, by introducing a proportionality coefficient to correct for the intensity fluctuations of the probe light, we mitigate its disturbance on the statistical measurement of particle numbers in the experiment. This work not only provides a design reference for other quantum gas experiments requiring absorption imaging under strong bias magnetic fields, but also serves as an important reference for improving the imaging performance.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 92365208 and 11920101004) and the National Key Research and Development Program of China (Grant Nos. 2021YFA0718300 and 2021YFA1400900).
Yuying Chen(陈玉莹), Zhengxi Zhang(张正熙), Hongmian Shui(税鸿冕), Yun Liang(梁芸), Fansu Wei(魏凡粟), and Xiaoji Zhou(周小计) Ultracold atomic absorption imaging system in high magnetic fields 2025 Chin. Phys. B 34 053303
[1] Giorgini S, Pitaevskii Lev P and Stringari S 2008 Rev. Mod. Phys. 80 1215 [2] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885 [3] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198 [4] Chin J K, Miller D E, Liu Y, Stan C, Setiawan W, Sanner C, Xu K and Ketterle W 2006 Nature 443 961 [5] Guo X X, Yu Z C, Wei F S, Jin S J, Chen X Z, Li X P, Zhang X B and Zhou X J 2022 Sci. Bull. 67 2291 [6] Hu D, Niu L X, Jin S J, Chen X Z, Dong G J, Schmiedmayer J and Zhou X J 2018 Commun. Phys. 1 29 [7] Haim A, Henrik B and Preben B 2008 Appl. Opt. 47 5354 [8] Niu L X, Guo X X, Zhan Y, Chen X Z, Liu W M and Zhou X J 2018 Appl. Phys. Lett. 113 144103 [9] Smith D A, Aigner S, Hofferberth S, Gring M, Andersson M, Wildermuth S, Krüger P, Schneider S, Schumm T and Schmiedmayer J 2011 Opt. Express 19 8471 [10] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225 [11] Svetlana K 2014 Rep. Prog. Phys 77 093901 [12] Bourdel T, Khaykovich L, Cubizolles J, Zhang J, Chevy F, Teichmann M, Tarruell L, Kokkelmans S J J M F and Salomon C 2004 Phys. Rev. Lett. 93 050401 [13] Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Chin C, Hecker D J and Grimm R 2003 Science 302 2101 [14] Petrov D S, Salomon C and Shlyapnikov G V 2004 Phys. Rev. Lett. 93 090404 [15] Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, Kerman A J and Ketterle W 2004 Phys. Rev. Lett. 92 120403 [16] Zhang Z D, Yao K X, Feng L, Hu J Z and Chin C 2020 Nat. Phys. 16 652 [17] Liu Y Q, Zhang Z C, Miao S W, Zhao Z H, Wang H C, Chen W L and Hu J Z 2023 Phys. Rev. Appl. 20 014037 [18] Hueck K, Luick N, Sobirey L, Siegl J, Lompe T, Moritz H, Clark L W and Chin C 2017 Opt. Express 25 8670 [19] Horikoshi M, Ito A, Ikemachi T, Aratake Y, Kuwata-Gonokami M and Koashi M 2017 J. Phys. Soc. Jpn. 86 104301 [20] Wang D, Neyenhuis B, De Miranda M H G, Ni K-K, Ospelkaus S, Jin D S and Ye J 2010 Phys. Rev. A 81 061404 [21] Hans M, Schmutte F, Viermann C, Liebster N, Sparn M, Oberthaler M K and Strobel H 2021 Rev. Sci. Instrum. 92 023203 [22] Vibel T, Christensen M B, Kristensen M A, Thuesen J J, Stokholm L N, Weidner C A and Arlt J J 2024 J. Phys. B: At. Mol. Opt. Phys. 57 145301 [23] Reinaudi G, Lahaye T,Wang Z and Guéry-Odelin D 2007 Opt. Lett. 32 3143 [24] Mao D k, Shui H M, Yin G L, Peng P, Wang C W and Zhou X J 2024 Chin. Phys. B 33 024209 [25] Puentes G 2012 Appl. Phys. B 107 11 [26] Wei F S, Zhang Z X, Chen Y Y, Shui H M, Liang Y, Li C and Zhou X J 2024 Phys. Rev. A 109 043313 [27] Chen Y Y, Zhang Z X, Lai C K, Shui H M, Liang Y, Wei F S and Zhou X J 2025 Phys. Rev. A 111 043303 [28] Zhou X, Jin S and Schmiedmayer J 2018 New J. Phys. 20 055005
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.