Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 086801    DOI: 10.1088/1674-1056/ad5af0
Special Issue: SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS
TOPICAL REVIEW — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS Prev   Next  

Cryogenic transmission electron microscopy on beam-sensitive materials and quantum science

Gang Wang(王刚)1 and Jun-Hao Lin(林君浩)1,2,†
1 Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China;
2 Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
Abstract  Transmission electron microscopy (TEM) offers unparalleled atomic-resolution imaging of complex materials and heterogeneous structures. However, high-energy imaging electrons can induce structural damage, posing a challenge for electron-beam-sensitive materials. Cryogenic TEM (Cryo-TEM) has revolutionized structural biology, enabling the visualization of biomolecules in their near-native states at unprecedented detail. The low electron dose imaging and stable cryogenic environment in Cryo-TEM are now being harnessed for the investigation of electron-beam-sensitive materials and low-temperature quantum phenomena. Here, we present a systematic review of the interaction mechanisms between imaging electrons and atomic structures, illustrating the electron beam-induced damage and the mitigating role of Cryo-TEM. This review then explores the advancements in low-dose Cryo-TEM imaging for elucidating the structures of organic-based materials. Furthermore, we showcase the application of Cryo-TEM in the study of strongly correlated quantum materials, including the detection of charge order and novel topological spin textures. Finally, we discuss the future prospects of Cryo-TEM, emphasizing its transformative potential in unraveling the complexities of materials and phenomena across diverse scientific disciplines.
Keywords:  cryogenic TEM      low dose imaging      quantum materials  
Received:  30 April 2024      Revised:  17 June 2024      Accepted manuscript online: 
PACS:  68.37.Lp (Transmission electron microscopy (TEM))  
  78.55.Kz (Solid organic materials)  
  71.45.Lr (Charge-density-wave systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974156), the Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2019ZT08C044), the Shenzhen Science and Technology Program (Grant Nos. KQTD20190929173815000 and 20200925161102001), and the Science, Technology and Innovation Commission of Shenzhen Municipality (Grant No. ZDSYS20190902092905285).
Corresponding Authors:  Jun-Hao Lin     E-mail:  linjh@sustech.edu.cn

Cite this article: 

Gang Wang(王刚) and Jun-Hao Lin(林君浩) Cryogenic transmission electron microscopy on beam-sensitive materials and quantum science 2024 Chin. Phys. B 33 086801

[1] Williams D B and Carter C B 1996 Transmission Electron Microscopy: A Textbook for Materials Science (Boston, MA: Springer US) pp. 3-17
[2] Newbury D E and Williams D B 2000 Acta Mater. 48 323
[3] Wang W, Sun S, Li J, Zheng D, Huang S, Tian H, Yang H and Li J 2023 Chin. Phys. B 33 010701
[4] Pennycook S J and Nellist P D 2011 Scanning Transmission Electron Microscopy: Imaging and Analysis (Springer Science & Business Media) pp. 91-115
[5] Varela M, Lupini A R, Benthem K van, Borisevich A Y, Chisholm M F, Shibata N, Abe E and Pennycook S J 2005 Annu. Rev. Mater. Res. 35 539
[6] Chen Q, Dwyer C, Sheng G, Zhu C, Li X, Zheng C and Zhu Y 2020 Adv. Mater. 32 1907619
[7] Watt J, Huber D L and Stewart P L 2019 MRS Bull. 44 942
[8] Frank J 2002 Annu. Rev. Biophys. Biomol. Struct. 31 303
[9] Cheng Y 2015 Cell 161 450
[10] Taylor K A and Glaeser R M 1974 Science. 186 1036
[11] Guaita M, Watters S C and Loerch S 2022 Curr. Opin. Struct. Biol. 77 102484
[12] Cui Y and Kourkoutis L 2021 Acc. Chem. Res. 54 3619
[13] Liu Y, Ju Z, Zhang B, Wang Y, Nai J, Liu T and Tao X 2021 Acc. Chem. Res. 54 2088
[14] Zhang Z, Cui Y, Vila R, Li Y, Zhang W, Zhou W, Chiu W and Cui Y 2021 Acc. Chem. Res. 54 3505
[15] Bianco E and Kourkoutis L F 2021 Acc. Chem. Res. 54 3277
[16] Zhu Y 2021 Acc. Chem. Res. 54 3518
[17] Patterson J P, Xu Y, Moradi M-A, Sommerdijk N A J M and Friedrich H 2017 Acc. Chem. Res. 50 1495
[18] Wang L 2023 Chin. Phys. Lett. 40 050503
[19] Valdrè U and Goringe M J 1965 J. Sci. Instrum. 42 268
[20] Fernández-Morán H 1966 Proc. Natl. Acad. Sci. USA 56 801
[21] Harada K, Matsuda T, Bonevich J, Igarashi M, Kondo S, Pozzi G, Kawabe U and Tonomura A 1992 Nature 360 51
[22] Goringe M J and Valdre U 1965 Phys. Rev. Lett. 14 823
[23] Egerton R F, Li P and Malac M 2004 Micron 35 399
[24] Ilett M, Sári M, Freeman H, Aslam Z, Koniuch N, Afzali M, Cattle J, Hooley R, Roncal-Herrero T, Collins S M, Hondow N, Brown A and Brydson R 2020 Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378 20190601
[25] Egerton R F 2019 Micron 119 72
[26] Ran J, Dyck O, Wang X, Yang B, Geohegan D B and Xiao K 2020 Adv. Energy Mater. 10 1903191
[27] Du H Q, Jiang Y, Rothmann M U, Bach U, Cheng Y B and Li W 2023 Appl. Phys. Rev. 10 021314
[28] Jiang N 2015 Reports Prog. Phys. 79 016501
[29] Suenaga K, Iizumi Y and Okazaki T 2011 Eur. Phys. J. Appl. Phys. 54 33508
[30] Komsa H-P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U and Krasheninnikov A V 2012 Phys. Rev. Lett. 109 035503
[31] Egerton R F 2014 Ultramicroscopy 145 85
[32] Kretschmer S, Lehnert T, Kaiser U and Krasheninnikov A V 2020 Nano Lett. 20 2865
[33] Roberts M W, Thomas J M and Hobbs L W 1975 Surface and Defect Properties of Solids vol. 4 (The Royal Society of Chemistry) pp. 152- 250
[34] Xue H, Zhang M, Liu J, Wang J and Ren G 2022 Front. Chem. 10 889203
[35] Banhart F 1999 Reports Prog. Phys. 62 1181
[36] Kotakoski J, Jin C H, Lehtinen O, Suenaga K and Krasheninnikov A V 2010 Phys. Rev. B 82 113404
[37] Bachmatiuk A, Zhao J, Gorantla S M, Martinez I G G, Wiedermann J, Lee C, Eckert J and Rummeli M H 2015 Small 11 515
[38] Jiang N and Spence J C H 2012 Ultramicroscopy 113 77
[39] Salisbury I G, Timsit R S, Berger S D and Humphreys C J 1984 Appl. Phys. Lett. 45 1289
[40] Smith B J, Parent L R, Overholts A C, Beaucage P A, Bisbey R P, Chavez A D, Hwang N, Park C, Evans A M, Gianneschi N C and Dichtel W R 2017 ACS Cent. Sci. 3 58
[41] Pan M and Crozier P A 1993 Ultramicroscopy 48 332
[42] Chamberlain T W, Biskupek J, Skowron S T, Bayliss P A, Bichoutskaia E, Kaiser U and Khlobystov A N 2015 Small 11 622
[43] Lyu Z, Yao L, Chen W, Kalutantirige F C and Chen Q 2023 Chem. Rev. 123 4051
[44] Bustillo K C, Zeltmann S E, Chen M, Donohue J, Ciston J, Ophus C and Minor A M 2021 Acc. Chem. Res. 54 2543
[45] Deng Y and Nest L G 2021 J. Microsc. 282 195
[46] Zhu Y, Gui Z, Wang Q, Meng F, Feng S, Han B, Wang P, Huang L, Wang H L and Gu M 2020 Nano Energy 73 104820
[47] Rothmann M U, Kim J S, Borchert J, Lohmann K B, O’Leary C M, Sheader A A, Clark L, Snaith H J, Johnston M B, Nellist P D and Herz L M 2020 Science 370 eabb5940
[48] Zhu Y, Ciston J, Zheng B, Miao X, Czarnik C, Pan Y, Sougrat R, Lai Z, Hsiung C E, Yao K, Pinnau I, Pan M and Han Y 2017 Nat. Mater. 16 532
[49] Zhang D, Zhu Y, Liu L, Ying X, Hsiung C E, Sougrat R, Li K and Han Y 2018 Science. 359 675
[50] Yu Y, Zhang D, Kisielowski C, Dou L, Kornienko N, Bekenstein Y, Wong A B, Alivisatos A P and Yang P 2016 Nano Lett. 16 7530
[51] Dang Z, Shamsi J, Palazon F, Imran M, Akkerman Q A, Park S, Bertoni G, Prato M, Brescia R and Manna L 2017 ACS Nano 11 2124
[52] Talmon Y 1982 J. Microsc. 125 227
[53] Kabler M N and Williams R T 1978 Phys. Rev. B 18 1948
[54] Li Y, Wang K, Zhou W, Li Y, Vila R, Huang W, Wang H, Chen G, Wu G H, Tsao Y, Wang H, Sinclair R, Chiu W and Cui Y 2019 Matter 1 428
[55] Pouget E M, Bomans P H H, Dey A, Frederik P M, de With G and Sommerdijk N A J M 2010 J. Am. Chem. Soc. 132 11560
[56] Carcouët C C M C, van de Put M W P, Mezari B, Magusin P C M M, Laven J, Bomans P H H, Friedrich H, Esteves A C C, Sommerdijk N A J M, van Benthem R A T M and de With G 2014 Nano Lett. 14 1433
[57] Revealed I, Yuwono V M, Burrows N D, Soltis J A and Lee Penn R 2010 J. Am. Chem. Soc. 132 2163
[58] Leijten Z J W A, Keizer A D A, De With G and Friedrich H 2017 J. Phys. Chem. C 121 10552
[59] Li Y, Zhou W, Li Y, Huang W, Zhang Z, Chen G, Wang H, Wu G H, Rolston N, Vila R, Chiu W and Cui Y 2019 Joule 3 2854
[60] Levin B D A 2021 J. Phys. Mater. 4 042005
[61] Baek D J, Zachman M J, Goodge B H, Di Lu, Hikita Y, Hwang H Y and Kourkoutis L F 2018 Microsc. Microanal. 24 454
[62] Zachman M J, Tu Z, Choudhury S, Archer L A and Kourkoutis L F 2018 Nature 560 345
[63] Noriega R, Rivnay J, Vandewal K, Koch F P V, Stingelin N, Smith P, Toney M F and Salleo A 2013 Nat. Mater. 12 1038
[64] Levin B D A, Zachman M J, Werner J G, Sahore R, Nguyen K X, Han Y, Xie B, Ma L, Archer L A, Giannelis E P, Wiesner U, Kourkoutis L F and Muller D A 2017 Microsc. Microanal. 23 155
[65] Siangchaew K and Libera M 1997 Microsc. Microanal. 3 530
[66] Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, Shin H, Ahn N, Choi M, Kim D and Park N G 2016 Nat. Energy 1 16081
[67] Rakita Y, Bar-Elli O, Meirzadeh E, Kaslasi H, Peleg Y, Hodes G, Lubomirsky I, Oron D, Ehre D and Cahen D 2017 Proc. Natl. Acad. Sci. USA 114 E5504
[68] Liu Y, Collins L, Proksch R, Kim S, Watson B R, Doughty B, Calhoun T R, Ahmadi M, Ievlev A V., Jesse S, Retterer S T, Belianinov A, Xiao K, Huang J, Sumpter B G, Kalinin S V., Hu B and Ovchinnikova O S 2018 Nat. Mater. 17 1013
[69] Tsai H, Asadpour R, Blancon J C, Stoumpos C C, Durand O, Strzalka J W, Chen B, Verduzco R, Ajayan P M, Tretiak S, Even J, Alam M A, Kanatzidis M G, Nie W and Mohite A D 2018 Science 360 67
[70] Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H and Bakr O M 2015 Science 347 519
[71] Lee J W, Bae S H, De Marco N, Hsieh Y T, Dai Z and Yang Y 2018 Mater. Today Energy 7 149
[72] Zhao J, Deng Y, Wei H, Zheng X, Yu Z, Shao Y, Shield J E and Huang J 2017 Sci. Adv. 3 eaao5616
[73] Colella S, Mosconi E, Fedeli P, Listorti A, Gazza F, Orlandi F, Ferro P, Besagni T, Rizzo A, Calestani G, Gigli G, De Angelis F and Mosca R 2013 Chem. Mater. 25 4613
[74] Rothmann M U, Li W, Zhu Y, Bach U, Spiccia L, Etheridge J and Cheng Y B 2017 Nat. Commun. 8 14547
[1] Role of remote Coulomb scattering on the hole mobility at cryogenic temperatures in SOI p-MOSFETs
Xian-Le Zhang(张先乐), Peng-Ying Chang(常鹏鹰), Gang Du(杜刚), Xiao-Yan Liu(刘晓彦). Chin. Phys. B, 2020, 29(3): 038505.
[2] Effect of cryogenic temperature characteristics on 0.18-μm silicon-on-insulator devices
Bingqing Xie(解冰清), Bo Li(李博), Jinshun Bi(毕津顺), Jianhui Bu(卜建辉), Chi Wu(吴驰), Binhong Li(李彬鸿), Zhengsheng Han(韩郑生), Jiajun Luo(罗家俊). Chin. Phys. B, 2016, 25(7): 078501.
[3] Electrical characteristics of AlInN/GaN HEMTs under cryogenic operation
Zhang Xue-Feng (张雪锋), Wang Li (王莉), Liu Jie (刘杰), Wei Lai (魏崃), Xu Jian (许键). Chin. Phys. B, 2013, 22(1): 017202.
No Suggested Reading articles found!