Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 098703    DOI: 10.1088/1674-1056/ad625c
Special Issue: SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS
SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS Prev  

A large language model-powered literature review for high-angle annular dark field imaging

Wenhao Yuan(袁文浩)1, Cheng Peng(彭程)1, and Qian He(何迁)1,2,†
1 Department of Material Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, EA #03-09, 117575, Singapore;
2 Centre for Hydrogen Innovations, National University of Singapore, E8, 1 Engineering Drive 3, 117580, Singapore
Abstract  High-angle annular dark field (HAADF) imaging in scanning transmission electron microscopy (STEM) has become an indispensable tool in materials science due to its ability to offer sub-Å resolution and provide chemical information through Z-contrast. This study leverages large language models (LLMs) to conduct a comprehensive bibliometric analysis of a large amount of HAADF-related literature (more than 41000 papers). By using LLMs, specifically ChatGPT, we were able to extract detailed information on applications, sample preparation methods, instruments used, and study conclusions. The findings highlight the capability of LLMs to provide a new perspective into HAADF imaging, underscoring its increasingly important role in materials science. Moreover, the rich information extracted from these publications can be harnessed to develop AI models that enhance the automation and intelligence of electron microscopes.
Keywords:  large language models      high-angle annular dark field imaging      deep learning  
Received:  28 May 2024      Revised:  08 July 2024      Accepted manuscript online:  12 July 2024
PACS:  87.64.Ee (Electron microscopy)  
  84.35.+i (Neural networks)  
  87.64.mf (Dark field)  
  01.30.-y (Physics literature and publications)  
Fund: Project supported by National Research Foundation (NRF) Singapore, under its NRF Fellowship (Grant No. NRFNRFF11-2019-0002).
Corresponding Authors:  Qian He     E-mail:  heqian@nus.edu.sg

Cite this article: 

Wenhao Yuan(袁文浩), Cheng Peng(彭程), and Qian He(何迁) A large language model-powered literature review for high-angle annular dark field imaging 2024 Chin. Phys. B 33 098703

[1] Pennycook S J and Nellist P D 2011 Scanning transmission electron microscopy: imaging and analysis (Springer Science & Business Media)
[2] Nellist P D, Chisholm M F, Dellby N, Krivanek O L, Murfitt M F, Szilagyi Z S, Lupini A R, Borisevich A, Sides W H Jr and Pennycook S J 2004 Science 305 1741
[3] Pennycook S J 1989 Ultramicroscopy 30 58
[4] Pennycook S J and Boatner L A 1988 Nature 336 565
[5] Pennycook S J and Jesson D E 1990 Phys. Rev. Lett. 64 938
[6] Varela M, Lupini A R, van Benthem K, Borisevich A Y, Chisholm M F, Shibata N, Abe E and Pennycook S J 2005 Annu. Rev. Mater. Res. 35 539
[7] Pennycook S J, Li C J, Li M S, Tang C H, Okunishi E, Varela M, Kim Y M and Jang J H 2018 J. Anal. Sci. Technol. 11 14
[8] Pennycook S J 2012 Ultramicroscopy 123 28
[9] Sousa A A and Leapman R D 2012 Ultramicroscopy 123 38
[10] Kalinin S V, Ophus C, Voyles P M, Erni R, Kepaptsoglou D, Grillo V, Lupini A R, Oxley M P, Schwenker E, Chan M K Y, Etheridge J, Li X, Han G G D, Ziatdinov M, Shibata N and Pennycook S J 2022 Nat. Rev. Methods Primers 2 11
[11] Wang Z L 2003 Adv. Mater. 15 1497
[12] Zhang T J, Walsh A G, Yu J H and Zhang P 2021 Chem. Soc. Rev. 50 569
[13] Wu H J, Zhang Y, Ning S C, Zhao L D and Pennycook S J 2019 Mater. Horiz. 6 1548
[14] Gáquez J, Sánchez-Santolino G, Biškup N, Roldán M A, Cabero M, Pennycook S J and Varela M 2017 Mater. Sci. Semicond. Process. 65 49
[15] Martín A J, Mitchell S, Mondelli C, Jaydev S and Pérez-Ramírez J 2022 Nat. Catal. 5 854
[16] Van Eck N and Waltman L 2010 Scientometrics 84 523
[17] Aria M and Cuccurullo C 2017 J. Informetr. 11 959
[18] Chen C, Hu Z, Liu S and Tseng H 2012 Expert Opin. Biol. Ther. 12 593
[19] Zhang Q, Ding K, Lyv T, Wang X, Yin Q, Zhang Y, Yu J, Wang Y, Li X and Xiang Z 2024 arXiv: 2401.14656
[20] Thirunavukarasu A J, Ting D S J, Elangovan K, Gutierrez L, Tan T F and Ting D S W 2023 Nat. Med. 29 1930
[21] Choi J and Lee B 2024 Commun. Mater. 5 13
[22] Zhao Z, Ma D, Chen L, Sun L, Li Z, Xu H, Zhu Z, Zhu S, Fan S and Shen G 2024 2024 arXiv: 2401.14818
[23] Rubungo A N, Arnold C, Rand B P and Dieng A B 2023arXiv:2310.14029
[24] Zheng Z, Zhang O, Borgs C, Chayes J T and Yaghi O M 2023 J. Am. Chem. Soc. 145 18048
[25] Zheng Z, Rong Z, Rampal N, Borgs C, Chayes J T and Yaghi O M 2023 Angew. Chem. Int. Ed. Eng. 62 e202311983
[26] Dagdelen J, Dunn A, Lee S, Walker N, Rosen A S, Ceder G, Persson K A and Jain A 2024 Nat. Commun. 15 1418
[27] Polak M P and Morgan D 2024 Nat. Commun. 15 1569
[28] Suvarna M, Vaucher A C, Mitchell S, Laino T and Perez-Ramirez J 2023 Nat. Commun. 14 7964
[29] https://www.mrs.org/meetings-events/spring-meetings-exhibits/2024-mrs-spring-meeting
[30] Kalinin S V, Mukherjee D, Roccapriore K, Blaiszik B J, Ghosh A, Ziatdinov M A, Al-Najjar A, Doty C, Akers S, Rao N S, Agar J C and Spurgeon S R 2023 npj Comput. Mater. 9 227
[31] Spurgeon S R, Ophus C, Jones L, Petford-Long A, Kalinin S V, Olszta M J, Dunin-Borkowski R E, Salmon N, Hattar K, Yang W C D, Sharma R, Du Y, Chiaramonti A, Zheng H, Buck E C, Kovarik L, Penn R L, Li D, Zhang X, Murayama M and Taheri M L 2021 Nat. Mater. 20 274
[32] Sun Z, Shi J, Wang J, Jiang M, Wang Z, Bai X and Wang X 2022 Nanoscale 14 10761
[33] Liu S, Zhang F, Lin R and Liu W 2022 Chem. Res. Chin. Univ. 38 1263
[34] Treder K P, Huang C, Bell C G, Slater T J A, Schuster M E, Özkaya D, Kim J S and Kirkland A I 2023 npj Comput. Mater. 9 18
[35] Lin R, Zhang R, Wang C, Yang X Q and Xin H L 2021 Sci. Rep. 11 5386
[36] Chu T, Zhou L, Zhang B and Xuan F Z 2023 Nano Res. 17 2971
[37] Faraz K, Grenier T, Ducottet C and Epicier T 2022 Sci. Rep. 12 2484
[38] Zhu D, Wang C, Zou P, Zhang R, Wang S, Song B, Yang X, Low K B and Xin H L 2023 Nano Lett. 23 8272
[39] Khan A, Lee C H, Huang P Y and Clark B K 2023 npj Comput. Mater. 9 85
[40] Bals J and Epple M 2023 Adv. Intell. Syst. 5 2300004
[41] Cheng X, Xie C, Liu Y, Bai R, Xiao N, Ren Y, Zhang X, Ma H and Jiang C 2024 Chin. Phys. B 33 030703
[42] Jacobs R 2022 Comput. Mater. Sci. 211 111527
[43] Ziletti A, Kumar D, Scheffler M and Ghiringhelli L M 2018 Nat. Commun. 9 2775
[44] Munshi J, Rakowski A, Savitzky B H, Zeltmann S E, Ciston J, Henderson M, Cholia S, Minor A M, Chan M K Y and Ophus C 2022 npj Comput. Mater. 8 254
[45] Powell B M and Davis J H 2024 Nat Methods 21 1525
[46] Akers S, Kautz E, Trevino-Gavito A, Olszta M, Matthews B E, Wang L, Du Y and Spurgeon S R 2021 npj Comput. Mater. 7 187
[47] Yuan W, Yao B, Tan S, You F and He Q 2024 arXiv: 2407.19544
[48] Jang E J, Lee J, Jeong H Y and Kwak J H 2019 Appl. Catal. A: Gen. 572 1
[49] Wang Z, Chen Y, Mao S, Wu K, Zhang K, Li Q and Wang Y 2020 Adv. Sustain. Syst. 4 2000092
[50] Zhang J, Deng Y, Cai X, Chen Y, Peng M, Jia Z, Jiang Z, Ren P, Yao S, Xie J, Xiao D, Wen X, Wang N, Liu H and Ma D 2019 ACS Catal. 9 5998
[51] Xu Z, Yue Y, Bao X, Xie Z and Zhu H 2020 ACS Catal. 10 818
[52] Wan H, Qian L, Gong N, Hou H, Dou X, Zheng L, Zhang L and Liu L 2023 ACS Catal. 13 7383
[53] Singh J, Nelson R C, Vicente B C, Scott S L and van Bokhoven J A 2010 Physical Chemistry Chemical Physics 12 5668
[54] Yang F, Zhang J, Chen J, Wang G, Yu T, Li Q, Shi Z, Sun Q, Zhuo R and Wang R 2024 Nano Res. 17 5884
[55] Xu C, Tan S, Tang Y, Xi S, Yao B, Wade A, Zhao B, Lu S, Du Y, Tian M, He C, Ma L, Fu X, Shi J, Lu J, Howe A G R, Dai S, Luo G and He Q 2024 Appl. Catal. B 341 123285
[56] Xie J, Jiang H, Qian Y, Wang H, An N, Chen S, Dai Y and Guo S 2021 Advanced Materials Interfaces 8 2101325
[1] High-quality ghost imaging based on undersampled natural-order Hadamard source
Kang Liu(刘炕), Cheng Zhou(周成), Jipeng Huang(黄继鹏), Hongwu Qin(秦宏伍), Xuan Liu(刘轩), Xinwei Li(李鑫伟), and Lijun Song(宋立军). Chin. Phys. B, 2024, 33(9): 094204.
[2] Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
Xi Wang(王玺), Meng Tang(唐孟), Ming-Xuan Jiang(蒋明璇), Yang-Chun Chen(陈阳春), Zhi-Xiao Liu(刘智骁), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2024, 33(7): 076103.
[3] Image segmentation of exfoliated two-dimensional materials by generative adversarial network-based data augmentation
Xiaoyu Cheng(程晓昱), Chenxue Xie(解晨雪), Yulun Liu(刘宇伦), Ruixue Bai(白瑞雪), Nanhai Xiao(肖南海), Yanbo Ren(任琰博), Xilin Zhang(张喜林), Hui Ma(马惠), and Chongyun Jiang(蒋崇云). Chin. Phys. B, 2024, 33(3): 030703.
[4] Generation of orbital angular momentum hologram using a modified U-net
Zhi-Gang Zheng(郑志刚), Fei-Fei Han(韩菲菲), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2024, 33(3): 034207.
[5] A deep learning method based on prior knowledge with dual training for solving FPK equation
Denghui Peng(彭登辉), Shenlong Wang(王神龙), and Yuanchen Huang(黄元辰). Chin. Phys. B, 2024, 33(1): 010202.
[6] Crysformer: An attention-based graph neural network for properties prediction of crystals
Tian Wang(王田), Jiahui Chen(陈家辉), Jing Teng(滕婧), Jingang Shi(史金钢),Xinhua Zeng(曾新华), and Hichem Snoussi. Chin. Phys. B, 2023, 32(9): 090703.
[7] Classification and structural characteristics of amorphous materials based on interpretable deep learning
Jiamei Cui(崔佳梅), Yunjie Li(李韵洁), Cai Zhao(赵偲), and Wen Zheng(郑文). Chin. Phys. B, 2023, 32(9): 096101.
[8] Disruption prediction based on fusion feature extractor on J-TEXT
Wei Zheng(郑玮), Fengming Xue(薛凤鸣), Zhongyong Chen(陈忠勇), Chengshuo Shen(沈呈硕), Xinkun Ai(艾鑫坤), Yu Zhong(钟昱), Nengchao Wang(王能超), Ming Zhang(张明),Yonghua Ding(丁永华), Zhipeng Chen(陈志鹏), Zhoujun Yang(杨州军), and Yuan Pan(潘垣). Chin. Phys. B, 2023, 32(7): 075203.
[9] Modeling differential car-following behavior under normal and rainy conditions: A memory-based deep learning method with attention mechanism
Hai-Jian Bai(柏海舰), Chen-Chen Guo(过晨晨), Heng Ding(丁恒), Li-Yang Wei(卫立阳), Ting Sun(孙婷), and Xing-Yu Chen(陈星宇). Chin. Phys. B, 2023, 32(6): 060507.
[10] Inatorial forecasting method considering macro and micro characteristics of chaotic traffic flow
Yue Hou(侯越), Di Zhang(张迪), Da Li(李达), and Ping Yang(杨萍). Chin. Phys. B, 2023, 32(10): 100508.
[11] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[12] Development of an electronic stopping power model based on deep learning and its application in ion range prediction
Xun Guo(郭寻), Hao Wang(王浩), Changkai Li(李长楷),Shijun Zhao(赵仕俊), Ke Jin(靳柯), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(7): 073402.
[13] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[14] Fringe removal algorithms for atomic absorption images: A survey
Gaoyi Lei(雷高益), Chencheng Tang(唐陈成), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2022, 31(5): 050313.
[15] Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红). Chin. Phys. B, 2022, 31(3): 033101.
No Suggested Reading articles found!