INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Unveiling the in-plane anisotropic dielectric waveguide modes in α-MoO3 flakes |
Ying Liao(廖莹)1,2 and Jianing Chen(陈佳宁)1,2,3,† |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract The unique in-plane and out-of-plane anisotropy of $\alpha $-MoO$_{3}$ has attracted considerable interest with regard to potential optoelectronic applications. However, most research has focused on the mid-infrared spectrum, leaving its properties and applications in the visible and near-infrared light spectrum less explored. This study advances the understanding of waveguiding properties of $\alpha $-MoO$_{3}$ by near-field imaging of the waveguide modes along the [100] and [001] directions of $\alpha $-MoO$_{3}$ flakes at 633 nm and 785 nm. We investigate the effects of flake thickness and documented the modes' dispersion relationships, which is crucial for tailoring the optical responses of $\alpha $-MoO$_{3}$ in device applications. Our findings enhance the field of research into $\alpha $-MoO$_{3}$, highlighting its utility in fabricating next-generation optoelectronic devices due to its unique optically anisotropic waveguide.
|
Received: 13 March 2024
Revised: 07 April 2024
Accepted manuscript online: 12 April 2024
|
PACS:
|
84.40.Az
|
(Waveguides, transmission lines, striplines)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
07.79.Fc
|
(Near-field scanning optical microscopes)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1203500), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000), and the CAS Youth Interdisciplinary Team. |
Corresponding Authors:
Jianing Chen
E-mail: jnchen@iphy.ac.cn;
|
Cite this article:
Ying Liao(廖莹) and Jianing Chen(陈佳宁) Unveiling the in-plane anisotropic dielectric waveguide modes in α-MoO3 flakes 2024 Chin. Phys. B 33 078401
|
[1] Zhang Q, Hu G, Ma W, Li P, Krasnok A, Hillenbrand R, Alù A and Qiu C W 2021 Nature 597 187 [2] Liu Y, Huang Y and Duan X 2019 Nature 567 323 [3] Li J, Yang X, Liu Y, Huang B, Wu R, Zhang Z, Zhao B, Ma H, Dang W, Wei Z, Wang K, Lin Z, Yan X, Sun M, Li B, Pan X, Luo J, Zhang G, Liu Y, Huang Y, Duan X and Duan X 2020 Nature 579 368 [4] Hu D, Yang X, Li C, Liu R, Yao Z, Hu H, Corder S N G, Chen J, Sun Z, Liu M and Dai Q 2017 Nat. Commun. 8 1 [5] Liang S, Cheng B, Cui X and Miao F 2020 Adv. Mater. 32 1903800 [6] Wang H, Li Z, Li D, Chen P, Pi L, Zhou X and Zhai T 2021 Adv. Funct. Mater. 31 2103106 [7] Wang R, Cui Q, Zhu W, Niu Y, Liu Z, Zhang L, Wu X, Chen S and Song L 2022 Chin. Phys. B 31 096802 [8] Zhu D, Wang Z and Zhu D 2020 J. Electron. Mater. 49 1765 [9] Wong D, Nuckolls K P, Oh M, Lian B, Xie Y, Jeon S, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A 2020 Nature 582 198 [10] Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Zurutuza Elorza A, Camara N, De Abajo F J G, Hillenbrand R and Koppens F H L 2012 Nature 487 77 [11] Falkovsky L A 2008 J. Phys.: Conf. Ser. 129 012004 [12] Papageorgiou D G, Kinloch I A and Young R J 2017 Prog. Mater Sci. 90 75 [13] Güler Ö and Ba ǧcı N 2020 J. Mater. Res. Technol. 9 6808 [14] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [15] Tiwari S K, Sahoo S, Wang N and Huczko A 2020 J. Sci. Adv. Mater. Devices 5 10 [16] Yu W, Sisi L, Haiyan Y and Jie L 2020 RSC Adv. 10 15328 [17] Huang H, Shi H, Das P, Qin J, Li Y, Wang X, Su F, Wen P, Li S, Lu P, Liu F, Li Y, Zhang Y, Wang Y, Wu Z and Cheng H 2020 Adv. Funct. Mater. 30 1909035 [18] You R, Liu Y, Hao Y, Han D, Zhang Y and You Z 2020 Adv. Mater. 32 1901981 [19] Dvorak M, Oswald W and Wu Z 2013 Sci. Rep. 3 2289 [20] Zeng M, Liu J, Zhou L, Mendes R G, Dong Y, Zhang M Y, Cui Z H, Cai Z, Zhang Z, Zhu D, Yang T, Li X, Wang J, Zhao L, Chen G, Jiang H, Rümmeli M H, Zhou H and Fu L 2020 Nat. Mater. 19 528 [21] Tang H L, Chiu M H, Tseng C C, Yang S H, Hou K J, Wei S Y, Huang J K, Lin Y F, Lien C H and Li L J 2017 ACS Nano 11 12817 [22] Lu Q, Yu Y, Ma Q, Chen B and Zhang H 2016 Adv. Mater. 28 1917 [23] Tian H, Tice J, Fei R, Tran V, Yan X, Yang L and Wang H 2016 Nano Today 11 763 [24] Zhao S, Dong B, Wang H, Wang H, Zhang Y, Han Z V and Zhang H 2020 Nanoscale Adv. 2 109 [25] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372 [26] Xia F, Wang H and Jia Y 2014 Nat. Commun. 5 4458 [27] Yang Y, Liu S C, Li Z, Xue D J and Hu J S 2021 Chem. Commun. 57 565 [28] Liu E, Fu Y, Wang Y, Feng Y, Liu H, Wan X, Zhou W, Wang B, Shao L, Ho C H, Huang Y S, Cao Z, Wang L, Li A, Zeng J, Song F, Wang X, Shi Y, Yuan H, Hwang H Y, Cui Y, Miao F and Xing D 2015 Nat. Commun. 6 6991 [29] Lin J, Liang L, Ling X, Zhang S, Mao N, Zhang N, Sumpter B G, Meunier V, Tong L and Zhang J 2015 J. Am. Chem. Soc. 137 15511 [30] Kim J S, Liu Y, Zhu W, Kim S, Wu D, Tao L, Dodabalapur A, Lai K and Akinwande D 2015 Sci. Rep. 5 8989 [31] Ma W, Alonso-González P, Li S, Nikitin A Y, Yuan J, Martín-Sánchez J, Taboada-Gutiérrez J, Amenabar I, Li P, Vélez S, Tollan C, Dai Z, Zhang Y, Sriram S, Kalantar-Zadeh K, Lee S T, Hillenbrand R and Bao Q 2018 Nature 562 557 [32] Zheng Z, Xu N, Oscurato S L, Tamagnone M and Chen H 2019 Science Advances 5 eaav8690 [33] Wen M, Chen X, Zheng Z, Deng S, Li Z, Wang W and Chen H 2021 J. Phys. Chem. C 125 765 [34] Petronijevic E, Dereshgi S A, Larciprete M C, Centini M, Sibilia C and Aydin K 2022 ACS Appl. Nano Mater. 5 5609 [35] Wu B Y, Shi Z X, Wu F, Wang M J and Wu X H 2022 Chin. Phys. B 31 044101 [36] Dhanasankar M, Purushothaman K K and Muralidharan G 2010 Solid State Sci. 12 246 [37] Zhang L, Wu G, Gu F and Zeng H 2015 Sci. Rep. 5 17388 [38] Bortoti A A, Gavanski A D F, Velazquez Y R, Galli A and De Castro E G 2017 J. Solid State Chem. 252 111 [39] Du Y, Li G, Peterson E W, Zhou J, Zhang X, Mu R, Dohnálek Z, Bowden M, Lyubinetsky I and Chambers S A 2016 Nanoscale 8 3119 [40] Abedini Dereshgi S, Lee Y, Larciprete M C, Centini M, Dravid V P and Aydin K 2023 Adv. Opt. Mater. 11 2202603 [41] Fang L, Shu Y, Wang A and Zhang T 2007 J. Phys. Chem. C 111 2401 [42] Wong K P, Hu X, Lo T W, Guo X, Fung K H, Zhu Y and Lau S P 2021 Advanced Optical Materials 9 2100294 [43] Mooshammer F, Chae S, Zhang S, Shao Y, Qiu S, Rajendran A, Sternbach A J, Rizzo D J, Zhu X, Schuck P J, Hone J C and Basov D N 2022 ACS Photonics 9 443 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|