Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 050306    DOI: 10.1088/1674-1056/ad2505
GENERAL Prev   Next  

Enhancing quantum temporal steering via frequency modulation

Mengkai Wu(吴孟凯) and Weiwen Cheng(程维文)†
Institute of Signal Processing & Transmission, Nanjing University of Posts and Telecommunication, Nanjing 210003, China
Abstract  Various strategies have been proposed to harness and protect space-like quantum correlations in different models under decoherence. However, little attention has been given to temporal-like correlations, such as quantum temporal steering (TS), in this context. In this work, we investigate TS in a frequency-modulated two-level system coupled to a zero-temperature reservoir in both the weak and strong coupling regimes. We analyze the impact of various frequency-modulated parameters on the behavior of TS and non-Markovian. The results demonstrate that appropriate frequency-modulated parameters can enhance the TS of the two-level system, regardless of whether the system is experiencing Markovian or non-Markovian dynamics. Furthermore, a suitable ratio between modulation strength and frequency (i.e., all zeroes of the 0th Bessel function $J_{0}({\delta}/{\varOmega})$) can significantly enhance TS in the strong coupling regime. These findings indicate that efficient and effective manipulation of quantum TS can be achieved through a frequency-modulated approach.
Keywords:  quantum temporal steering      frequency modulation      decoherence  
Received:  03 December 2023      Revised:  20 January 2024      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62375140).
Corresponding Authors:  Weiwen Cheng,E-mail:wwcheng@njupt.edu.cn     E-mail:  wwcheng@njupt.edu.cn

Cite this article: 

Mengkai Wu(吴孟凯) and Weiwen Cheng(程维文) Enhancing quantum temporal steering via frequency modulation 2024 Chin. Phys. B 33 050306

[1] Wiseman H M, Jones S J and Doherty A C 2007 Phys. Rev. Lett. 98 140402
[2] Jones S J, Wiseman H M and Doherty A C 2007 Phys. Rev. A 76 052116
[3] Skrzypczyk P, Navascués M and Cavalcanti D 2014 Phys. Rev. Lett. 112 180404
[4] Cavalcanti D and Skrzypczyk P 2017 Rep. Prog. Phys. 80 024001
[5] Piani M and Watrous J 2015 Phys. Rev. Lett. 114 060404
[6] Sainz A B, Aolita L, Brunner N, Gallego R and Skrzypczyk P 2016 Phys. Rev. A 94 012308
[7] H?ndchen V, Eberle T, Steinlechner S, Samblowski A, Franz T, Werner R F and Schnabel R 2012 Nat. Photon. 6 596
[8] Bowles J, Vértesi T, Quintino M T and Brunner N 2014 Phys. Rev. Lett. 112 200402
[9] Zhu D, Shang W M, Zhang F L and Chen J L 2022 Chin. Phys. Lett.39 070302
[10] Chen Y Y, Guo F Z, Wei S H and Wen Q Y 2023 Chin. Phys. B 32 040309
[11] Yang H, Xing L L, Ding Z Y, Zhang G and Ye L 2022 Chin. Phys. B 31 090302
[12] Wollmann S, Walk N, Bennet A J, Wiseman H M and Pryde G J 2016 Phys. Rev. Lett. 116 160403
[13] Branciard C, Cavalcanti E G, Walborn S P, Scarani V and Wiseman H M 2012 Phys. Rev. A 85 010301
[14] He Q Y, Rosales-Zárate L, Adesso G and Reid M D 2015 Phys. Rev. Lett. 115 180502
[15] Cheng W W, Wang B W, Gong L Y and Zhao S M 2021 Quantum Inf. Processing 20 371
[16] Li C M, Chen K, Chen Y N, Zhang Q, Chen Y A and Pan J W 2015 Phys. Rev. Lett. 115 010402
[17] Wang Y, Hao Z Y, Li J K, Liu Z H, Sun K, Xu J X, Li C F and Guo G C 2023 Phys. Rev. Lett. 130 200202
[18] Cavalcanti E G, Jones S J, Wiseman H M and Reid M D 2009 Phys. Rev. A 80 032112
[19] Schneeloch J, Broadbent C J, Walborn S P, Cavalcanti E G and Howell J C 2013 Phys. Rev. A 87 062103
[20] Zhen Y Z, Zheng Y L, Cao W F, Li L, Chen Z B, Liu N L and Chen K 2016 Phys. Rev. A 93 012108
[21] Chen Y N, Li C M, Lambert N, Chen S L, Ota Y, Chen G Y and Nori F 2014 Phys. Rev. A 89 032112
[22] Chen S L, Lambert N, Li C M, Miranowicz A, Chen Y N and Nori F 2016 Phys. Rev. Lett. 116 020503
[23] Bartkiewicz K, Černoch A, Lemr K, Miranowicz A and Nori F 2016 Phys. Rev. A 93 062345
[24] Ku H Y, Chen S L, Chen H B, Lambert N, Chen Y N and Nori F 2016 Phys. Rev. A 94 062126
[25] Liu B, Huang Y and Sun Z 2018 Ann. Phys. 530 1700373
[26] Cheng W W, Chen M, Gong L Y and Zhao S M 2021 Eur. Phys. J. D 75 75
[27] Cheng W W and Li B 2023 Quantum Inf. Processing 22 294
[28] Lo Franco R, DArrigo A, Falci G, Compagno G and Paladino E 2014 Phys. Rev. B 90 054304
[29] Xu J S, Sun K, Li C F, Xu X Y, Guo G C, Andersson E, Lo Franco R and Compagno G 2013 Nat. Commun. 4 2851
[30] Xue S B, Wu R B, Zhang W M, Zhang J, Li C W and Tarn T J 2012 Phys. Rev. A 86 052304
[31] Man Z X, Xia Y J and An N B 2012 Phys. Rev. A 86 052322
[32] Man Z X, Xia Y J and Lo Franco R 2015 Phys. Rev. A 92 012315
[33] Maniscalco S, Francica F, Zaffino R L, Gullo N L and Plastina F 2008 Phys. Rev. Lett. 100 090503
[34] Campos Venuti L, Ma Z, Saleur H and Haas S 2017 Phys. Rev. A 96 053858
[35] Silveri M P, Tuorila J A, Thuneberg E V and Paraoanu G S 2017 Rep. Prog. Phys. 80 056002
[36] Huang J F, Liao J Q, Tian L and Kuang L M 2017 Phys. Rev. A 96 043849
[37] Beaudoin F, da Silva M P, Dutton Z and Blais A 2012 Phys. Rev. A 86 022305
[38] Han X, Wang D Y, Bai C H, Cui W X, Zhang S and Wang H F 2019 Phys. Rev. A 100 033812
[39] Ficek Z, Seke J, Soldatov A V and Adam G 2001 Phys. Rev. A 64 013813
[40] Yan Y Y, Lü Z G, Luo J Y and Zheng H 2018 Phys. Rev. A 94 033817
[41] Janowicz M 2000 Phys. Rev. A 61 025802
[42] Zhou L, Yang S, Liu Y X, Sun C P and Nori F 2009 Phys. Rev. A 80 062109
[43] Deng C, Orgiazzi J L, Shen F, Ashhab S and Lupascu A 2015 Phys. Rev. Lett. 115 133601
[44] Macovei M and Keitel C H 2014 Phys. Rev. A 90 043838
[45] Agarwal G S 1999 Phys. Rev. A 61 013809
[46] Mortezapour A and Lo Franco R 2018 Sci. Rep. 8 14304
[47] Nourmandipour A and Mortezapour A 2023 Quantum Inf. Processing 22 254
[48] Forozesh M, Mortezapour A and Nourmandipour A 2021 Eur. Phys. J. Plus 136 778
[49] Rajabalinia A, Shadfar M K, Nosrati F, Mortezapour A, Morandotti R and Lo Franco R 2022 Phys. Rev. A 106 062431
[50] Poggi P M, Lombardo F C and Wisniacki D A 2017 Europhys. Lett. 118 20005
[51] Bellomo B, Lo Franco R and Compagno G 2007 Phys. Rev. Lett. 99 160502
[52] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[53] Xu Z Y, Luo S, Yang W L, Liu C and Zhu S Q 2014 Phys. Rev. A 89 012307
[1] Majorana noise model and its influence on the power spectrum
Shumeng Chen(陈书梦), Sifan Ding(丁思凡), Zhen-Tao Zhang(张振涛), and Dong E. Liu(刘东). Chin. Phys. B, 2024, 33(1): 017101.
[2] Parameter estimation method for a linear frequency modulation signal with a Duffing oscillator based on frequency periodicity
Ningzhe Zhang(张宁哲), Xiaopeng Yan(闫晓鹏), Minghui Lv(吕明慧), Xiumei Chen(陈秀梅), and Dingkun Huang(黄鼎琨). Chin. Phys. B, 2023, 32(8): 080701.
[3] Measurement of remanent magnetic moment using a torsion pendulum with single frequency modulation method
Min-Na Qiao(乔敏娜), Lu-Hua Liu(刘鲁华), Bo-Song Cai(蔡柏松), Ya-Ting Zhang(张雅婷),Qing-Lan Wang(王晴岚), Jia-Hao Xu(徐家豪), and Qi Liu(刘祺). Chin. Phys. B, 2023, 32(5): 050702.
[4] Real-time dynamics in strongly correlated quantum-dot systems
Yong-Xi Cheng(程永喜), Zhen-Hua Li(李振华), Jian-Hua Wei(魏建华), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2023, 32(12): 127302.
[5] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[6] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[7] Blind parameter estimation of pseudo-random binary code-linear frequency modulation signal based on Duffing oscillator at low SNR
Ke Wang(王珂), Xiaopeng Yan(闫晓鹏), Ze Li(李泽), Xinhong Hao(郝新红), and Honghai Yu(于洪海). Chin. Phys. B, 2021, 30(5): 050708.
[8] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[9] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[10] The effect of phase fluctuation and beam splitter fluctuation on two-photon quantum random walk
Zijing Zhang(张子静), Feng Wang(王峰), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2020, 29(2): 020503.
[11] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
[12] A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in neurons
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新). Chin. Phys. B, 2019, 28(4): 048701.
[13] Physics of quantum coherence in spin systems
Maimaitiyiming Tusun(麦麦提依明·吐孙), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(2): 024204.
[14] Enhancing von Neumann entropy by chaos in spin-orbit entanglement
Chen-Rong Liu(刘郴荣), Pei Yu(喻佩), Xian-Zhang Chen(陈宪章), Hong-Ya Xu(徐洪亚), Liang Huang(黄亮), Ying-Cheng Lai(来颖诚). Chin. Phys. B, 2019, 28(10): 100501.
[15] Boundary states for entanglement robustness under dephasing and bit flip channels
Hong-Mei Li(李红梅), Miao-Di Guo(郭苗迪), Rui Zhang(张锐), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2019, 28(10): 100302.
No Suggested Reading articles found!