Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 046201    DOI: 10.1088/1674-1056/adb271
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Pressure-driven crystal structure evolution in RbB2C4 compounds

Jinyu Liu(刘金禹)1, Ailing Liu(刘爱玲)1, Yujia Wang(王雨佳)1, Lili Gao(高丽丽)1, Xiangyi Luo(罗香怡)2,†, and Miao Zhang(张淼)1,‡
1 Department of Physics, School of Sciences, Beihua University, Jilin 132013, China;
2 College of Physics and Electronic Information, Baicheng Normal University, Baicheng 137000, China
Abstract  As an extreme physical condition, high pressure serves as a potent means to substantially modify the interatomic distances and bonding patterns within condensed matter, thereby enabling the macroscopic manipulation of material properties. We employed the CALYPSO method to predict the stable structures of RbB2C4 across the pressure range from 0 GPa to 100 GPa and investigated its physical properties through first-principles calculations. Specially, we found four novel structures, namely, P63/mcm-, Amm2-, P1-, and I4/mmm-RbB2C4. Under pressure conditions, electronic structure calculations reveal that all of them exhibit metallic characteristics. The calculation results of formation enthalpy show that the P63/mcm structure can be synthesized within the pressure range of 0-40 GPa. Specially, the Amm2, P1, and I4/mmm structures can be synthesized above 4 GPa, 6 GPa, 10 GPa, respectively. Moreover, the estimated Vickers hardness value of I4/mmm-RbB2C4 compound is 47 GPa, suggesting that it is a superhard material. Interestingly, this study uncovers the continuous transformation of the crystal structure of RbB2C4 from a layered configuration to folded and tubular forms, ultimately attaining a stabilized cage-like structure under the pressure span of 0-100 GPa. The application of pressure offers a formidable impetus for the advancement and innovation in condensed matter physics, facilitating the exploration of novel states and functions of matter.
Keywords:  first-principles calculation      high pressure      RbB2C4 compounds      crystal structure prediction  
Received:  02 January 2025      Revised:  28 January 2025      Accepted manuscript online:  05 February 2025
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  74.62.Bf (Effects of material synthesis, crystal structure, and chemical composition)  
  63.20.dk (First-principles theory)  
Fund: Project supported by the Jilin Provincial Science and Technology Development Joint Fund Project (Grant No. YDZJ202201ZYTS581). This work is also supported by the Scientific and Technological Research Project of Jilin Provincial Education Department (Grant No. JJKH20240077KJ).
Corresponding Authors:  Xiangyi Luo, Miao Zhang     E-mail:  luoxylgq@163.com;zhangmiaolmc@126.com

Cite this article: 

Jinyu Liu(刘金禹), Ailing Liu(刘爱玲), Yujia Wang(王雨佳), Lili Gao(高丽丽), Xiangyi Luo(罗香怡), and Miao Zhang(张淼) Pressure-driven crystal structure evolution in RbB2C4 compounds 2025 Chin. Phys. B 34 046201

[1] Holzapfel W B 1996 Reports on Progress in Physics 59 29
[2] Mujica A, Rubio A, Muñoz A and Needs R J 2003 Rev. Mod. Phys. 75 863
[3] Degtyareva O, MCMahon M I and Nelmes R J 2004 High Press Res. 24 319
[4] Xia H, Parthasarathy G, Luo H, Vohra Y K and Ruoff A L 1990 Phys. Rev. B 42 6736
[5] Xia H, Duclos S J, Ruoff A L and Vohra Y K 1990 Phys. Rev. Lett. 64 204
[6] Zhu L, Wang Z, Wang Y, Zou G, Mao H and Ma Y 2012 Proc. Natl. Acad. Sci. USA 109 751
[7] Mao H and Hemley R J 1994 Rev. Mod. Phys. 66 671
[8] McMahon M I, Gregoryanz E, Lundegaard L F, Loa I, Guillaume C, Nelmes R J, Kleppe A K, Amboage M, Wilhelm H and Jephcoat A P 2007 Proc. Natl. Acad. Sci. USA 104 17297
[9] Tse J S, Desgreniers S, Ohishi Y and Matsuoka T 2012 Sci. Rep. 2 372
[10] Ma Y, Tse J S and Klug D D 2003 Phys. Rev. B 67 140301
[11] Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A and Boehler R 2004 Nat. Mater. 3 558
[12] Khaliullin R Z, Eshet H, Kühne T D, Behler J and Parrinello M 2011 Nat. Mater. 10 693
[13] Fujii Y, Hase K, Ohishi Y, Fujihisa H, Hamaya N, Takemura K, Shimomura O, Kikegawa T, Amemiya Y and Matsushita T 1989 Phys. Rev. Lett. 63 536
[14] Gregoryanz E, Lundegaard L F, McMahon M I, Guillaume C, Nelmes R J and Mezouar M 2008 Science 320 1054
[15] Gregoryanz E, Degtyareva O, Somayazulu M, Hemley R J and Mao H 2005 Phys. Rev. Lett. 94 185502
[16] Kim E and Chan M H W 2006 Phys. Rev. Lett. 97 115302
[17] Shimizu K, Suhara K, Ikumo M, Eremets M I and Amaya K 1998 Nature 393 767
[18] Gao G, Oganov A R, Bergara A, Martinez-Canales M, Cui T, Iitaka T, Ma Y and Zou G 2008 Phys. Rev. Lett. 101 107002
[19] Chang K J, DacorognaMM, CohenML, Mignot J M, Chouteau G and Martinez G 1985 Phys. Rev. Lett. 54 2375
[20] Ma Y, Eremets M, Oganov A R, Xie Y, Trojan I, Medvedev S, Lyakhov A O, Valle M and Prakapenka V 2009 Nature 458 182
[21] Matsuoka T and Shimizu K 2009 Nature 458 186
[22] Babaev E, Sudbø A and Ashcroft N W 2004 Nature 431 666
[23] Zhu L, Strobel T A and Cohen R E 2020 Phys. Rev. Lett. 125 127601
[24] Zhu L, Liu H, Somayazulu M, Meng Y, Guńka P A, Shiell T B, Kenney-Benson C, Chariton S, Prakapenka V B, Yoon H, Horn J A, Paglione J, Hoffmann R, Cohen R E and Strobel T A 2023 Phys. Rev. Res. 5 013012
[25] Wang J N, Yan X W and Gao M 2021 Phys. Rev. B 103 144515
[26] Gai T T, Guo P J, Yang H C, Gao Y, Gao M and Lu Z Y 2022 Phys. Rev. B 105 224514
[27] Zhang P, Li X, Yang X, Wang H, Yao Y and Liu H 2022 Phys. Rev. B 105 094503
[28] Cui Z, Zhang X, Sun Y, Liu Y and Yang G 2022 Phys. Chem. Chem. Phys. 24 16884
[29] Liu A, Cheng X, Wang X, Zou Y and Zhang M 2023 Phys. Chem. Chem. Phys. 25 20837
[30] Cheng X, Liu A, Wang X, Zou Y, Zhang M and Gao L 2023 J. Alloys Compd. 969 172466
[31] Fang C M, Bauer J, Saillard J Y and Halet J F 2007 J. Solid State Chem. 180 2465
[32] Yan H, Chen L, Wei Z, Zhang M and Wei Q 2020 Vacuum 180 109617
[33] Lazicki A, Yoo C S, Cynn H, Evans W J, Pickett W E, Olamit J, Liu K and Ohishi Y 2007 Phys. Rev. B 75 054507
[34] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[35] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
[36] Gao B, Gao P, Lu S, Lv J, Wang Y and Ma Y 2019 Sci. Bull. 64 301
[37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[39] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[40] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[41] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[42] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[43] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[44] Chen X Q, Niu H, Li D and Li Y 2011 Intermetallics 19 1275
[45] Chen X Q, Niu H, Franchini C, Li D and Li Y 2011 Phys. Rev. B 84 121405
[46] Tian Y, Xu B and Zhao Z 2012 Int J. Refract Metals Hard Mater 33 93
[47] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
[48] Degtyareva O 2010 High Press Res. 30 343
[49] Oganov A R, Solozhenko V L, Gatti C, Kurakevych O O and Le Godec Y 2012 J. Superhard Mater. 34 74
[50] Kharabadze S, Meyers M, Tomassetti C R, Margine E R, Mazin I I and Kolmogorov A N 2023 Phys. Chem. Chem. Phys. 25 7344
[51] Milashius V, Pavlyuk V, Dmytriv G and Ehrenberg H 2018 Inorg. Chem. Front. 5 853
[1] Structural regulation and optical behavior of zero-dimensional Cu(I)-based organometallic halides under pressure
Runnan Ye(叶润楠), Jingtian Wang(王敬天), Jiayi Yang(杨佳毅), Xuchen Wang(王旭晨), Junce Lei(雷钧策), Wenya Zhao(赵文雅), Yufan Meng(孟雨凡), Guanjun Xiao(肖冠军), and Bo Zou(邹勃). Chin. Phys. B, 2025, 34(6): 066204.
[2] Band gap engineering and vibrational properties of van der Waals semiconductor ZnPSe3 under compression
Rouqiong Su(苏柔琼), Yuying Li(李玉莹), Chunhua Chen(陈春华), Yifang Yuan(袁亦方), and Haizhong Guo(郭海中). Chin. Phys. B, 2025, 34(6): 066205.
[3] Layer-dependent structural stability and electronic properties of CrPS4 under high pressure
Jian Zhu(朱健), Dengman Feng(冯登满), Liangyu Wang(王亮予), Liang Li(李亮), Fangfei Li(李芳菲), Qiang Zhou(周强), and Yalan Yan(闫雅兰). Chin. Phys. B, 2025, 34(6): 066102.
[4] Morphology-tuned phase transition of MnO2 nanorods under high pressure
Xue-Ting Zhang(张雪婷), Chen-Yi Li(李晨一), Hui Tian(田辉), Xin-Yue Wang(王心悦), Zong-Lun Li(李宗伦), and Quan-Jun Li(李全军). Chin. Phys. B, 2025, 34(6): 066105.
[5] Bulk modulus of molecular crystals
Xudong Jiang(江旭东), Yajie Wang(汪雅洁), Kuo Li(李阔), and Haiyan Zheng(郑海燕). Chin. Phys. B, 2025, 34(6): 066201.
[6] Measurement of the eutectic point of Fe-C alloy under 5 Gpa
Ting Zhang(张亭), Xiuyan Wei(魏秀艳), Zuguang Hu(胡祖光), Jianyun Yang(杨建云), Duanwei He(贺端威), Khalid Nabulsi, and Guodong (David) Zhan(詹国栋). Chin. Phys. B, 2025, 34(6): 066203.
[7] Pressure-induced superconductivity in Bi-doped BaFe2(As1-xBix)2 single crystals
Chang Su(苏畅), Wuhao Chen(陈吴昊), Wenjing Cheng(程文静), Jiabin Si(司佳斌), Qunfei Zheng(郑群飞), Jinlong Zhu(朱金龙), Lingyi Xing(邢令义), and Ying Liu(刘影). Chin. Phys. B, 2025, 34(6): 067403.
[8] Effective strategy of enhancing piezoelectricity in stable CrSiN4Sn semiconductor monolayers by atom-layer-pair effect
Qi-Wen He(贺绮雯), Dan-Yang Zhu(朱丹阳), Jun-Hui Wang(王俊辉), He-Na Zhang(张贺娜), Xiao Shang(尚骁), Shou-Xin Cui(崔守鑫), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2025, 34(5): 057701.
[9] Stoichiometric change and solid decomposition in Ca-S compounds under high pressure
Yang Lv(吕阳), Jian-Fu Li(李建福), Zhao-Bin Zhang(张钊彬), Yong Liu(刘勇), Jia-Nan Yuan(袁嘉男), Jia-Ni Lin(林佳妮), and Xiao-Li Wang(王晓丽). Chin. Phys. B, 2025, 34(4): 046202.
[10] Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective
Tianxu Zhang(张天旭), Kun Zhou(周琨), Yingjian Li(李英健), Chenhao Yi(易晨浩), Muhammad Faizan, Yuhao Fu(付钰豪), Xinjiang Wang(王新江), and Lijun Zhang(张立军). Chin. Phys. B, 2025, 34(4): 046301.
[11] Strain-modulated superconductivity of monolayer Tc2B2
Zhengtao Liu(刘正涛), Zihan Zhang(张子涵), Hao Song(宋昊), Tian Cui(崔田), and Defang Duan(段德芳). Chin. Phys. B, 2025, 34(4): 047104.
[12] Superconductivity in titanium probed by AC magnetic susceptibility to 120 GPa
Jing Song(宋静), Hongyu Liu(刘红玉), Xiancheng Wang(望贤成), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(4): 047403.
[13] Pressure-promoted ligand to metal energy transfer for emission enhancement of [Tb2(BDC)3(DMF)2(H2O)2]n metal-organic framework
Yunfeng Yang(杨云峰), Kaiyan Yuan(袁开岩), Binhao Yang(杨斌豪), Qing Yang(杨青), Yixuan Wang(王艺璇), and Xinyi Yang(杨新一)§. Chin. Phys. B, 2025, 34(3): 036101.
[14] First-principles insights into the high-pressure stability and electronic characteristics of molybdenum nitride
Tao Wang(王涛), Ming-Hong Wen(温铭洪), Xin-Xin Zhang(张新欣), Wei-Hua Wang(王伟华), Jia-Mei Liu(刘佳美), Xu-Ying Wang(王旭颖), and Pei-Fang Li(李培芳). Chin. Phys. B, 2025, 34(3): 036104.
[15] Insights to unusual antiferromagnetic behavior and exchange coupling interactions in Mn23C6
Ze-Kun Yu(于泽坤), Chao Zhou(周超), Kuo Bao(包括), Zhao-Qing Wang(王兆卿), En-Xuan Li(李恩萱), Jin-Ming Zhu(朱金铭), Yuan Qin(秦源), Yu-Han Meng(孟钰涵), Pin-Wen Zhu(朱品文), Qiang Tao(陶强), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(3): 037101.
No Suggested Reading articles found!