Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 046108    DOI: 10.1088/1674-1056/adb40d
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of copper/tungsten heterophase interface on radiation resistance: Insights from atomistic simulations

Wen Chen(陈文), Min Li(李敏), Bao-Qin Fu(付宝勤), Tun Chen(陈暾), Jie-Chao Cui(崔节超)†, and Qing Hou(侯氢)‡
Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
Abstract  Nanostructured materials have demonstrated superior radiation-damage tolerance compared to their coarse-grained counterparts, contributing to the extended lifespan of nuclear materials. However, the mechanisms underlying this enhanced irradiation resistance remain unclear. In this study, we present atomistic simulations to investigate the impact of Cu/W heterophase interface on the evolution of irradiation-induced defects. The simulation results reveal that the Cu/W interfaces can act as defect sinks, effectively trapping self-interstitial atoms (SIAs). Furthermore, the interface demonstrates both the interstitial emission and interstitial transfer mechanisms, wherein the trapped W SIAs facilitate the emission of Cu atoms from the interface to the Cu side. These emitted Cu SIAs can promote defect recombination on the Cu side, leading to a reduced defect concentration in the Cu/W nanomultilayers. Consequently, these combined mechanisms contribute to a lower overall concentration of irradiation-induced defect, thereby enhancing the radiation resistance of Cu/W nano-multilayers.
Keywords:  molecular dynamics      Cu/W nano-multilayers      interstitial transfer mechanism      radiation resistance  
Received:  14 October 2024      Revised:  09 December 2024      Accepted manuscript online:  08 February 2025
PACS:  61.80.Az (Theory and models of radiation effects)  
  61.46.-w (Structure of nanoscale materials)  
  61.72.J- (Point defects and defect clusters)  
  02.70.Ns (Molecular dynamics and particle methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12105194) and the Natural Science Foundation of Sichuan Province of China (Grant Nos. 2022NSFSC1251 and 2022NSFSC1265).
Corresponding Authors:  Jie-Chao Cui, Qing Hou     E-mail:  jiechaocui@scu.edu.cn;qhou@scu.edu.cn

Cite this article: 

Wen Chen(陈文), Min Li(李敏), Bao-Qin Fu(付宝勤), Tun Chen(陈暾), Jie-Chao Cui(崔节超), and Qing Hou(侯氢) Effect of copper/tungsten heterophase interface on radiation resistance: Insights from atomistic simulations 2025 Chin. Phys. B 34 046108

[1] Hasegawa A, Fukuda M, Nogami S and Yabuuchi K 2014 Fusion Eng. Des. 89 1568
[2] Hasegawa A, Fukuda M, Yabuuchi K and Nogami S 2016 J. Nucl. Mater. 471 175
[3] Fukuda M, Tanno T, Nogami S and Hasegawa A 2012 Mater. Trans. 53 2145
[4] Cui J C, Zhou Z B, Fu B Q and Hou Q 2020 Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 471 90
[5] Jiang L, Li M, Fu B Q, Cui J C and Hou Q 2024 Chin. Phys. B 33 036103
[6] Bai X M, Voter A F, Hoagland R G, Nastasi M and Uberuaga B P 2010 Science 327 1631
[7] Beyerlein I J, Caro A, DemkowiczMJ, Mara N A, Misra A and Uberuaga B P 2013 Mater. Today 16 443
[8] Callisti M, Karlik M and Polcar T 2016 J. Nucl. Mater. 473 18
[9] Chen H C, Hai Y, Zhan X Z, Xu J P, Cao X Z, Zhu T and Yin W 2022 Crystals 12 759
[10] Gao Y, Yang T F, Xue J M, Yan S, Zhou S Q,Wang Y Q, Kwok D T K, Chu P K and Zhang Y W 2011 J. Nucl. Mater. 413 11
[11] González C and Iglesias R 2016 Mater. Des. 91 171
[12] Li M, Hou Q, Cui J, Qiu M, Yang A and Zhou M 2021 J. Nucl. Mater. 555 153157
[13] Bai X M and Uberuaga B P 2013 Jom 65 360
[14] Liu X Y, Uberuaga B P, Demkowicz M J, Germann T C, Misra A and Nastasi M 2012 Phys. Rev. B 85 012103
[15] Dong L, Zhang H, Amekura H, Ren F, Chettah A, Hong M, Qin W, Tang J, Hu L, Wang H and Jiang C 2017 J. Nucl. Mater. 497 117
[16] Han W, Demkowicz M J, Mara N A, Fu E, Sinha S, Rollett A D, Wang Y, Carpenter J S, Beyerlein I J and Misra A 2013 Adv. Mater. 25 6975
[17] Li X, Liu W, Xu Y, Liu C S, Pan B C, Liang Y, Fang Q F, Chen J L, Luo G N, Lu G H and Wang Z 2016 Acta Mater. 109 115
[18] Fabritsiev S A, Zinkle S J and Singh B N 1996 J. Nucl. Mater. 233 127
[19] Tanno T, Fukuda M, Nogami S and Hasegawa A 2011 Mater. Trans. 52 1447
[20] Pintsuk G, Brünings S E, Döring J E, Linke J, Smid I and Xue L 2003 Fusion Eng. Des. 66 237
[21] Bodlos R, Fotopoulos V, Spitaler J, Shluger A L and Romaner L 2022 Materialia 21 101362
[22] DemkowiczMJ, Hoagland R G and Hirth J P 2008 Phys. Rev. Lett. 100 136102
[23] Kurdjumow G and Sachs G 1930 Z. Für Phys. 64 325
[24] Hou Q, Li M, Zhou Y L, Cui J C, Cui Z G and Wang J 2013 Comput. Phys. Commun. 184 2091
[25] Zhou X W, Johnson R A and Wadley H N G 2004 Phys. Rev. B 69 144113
[26] Ma G C, Fan J L and Gong H R 2018 Comput. Mater. Sci. 152 165
[27] Huang Y, Sun J, Ding R, Sang C and Wang D 2023 Fusion Eng. Des. 192 113824
[28] Li C, Zhu D, Ding R, Wang B, Chen J, Gao B and Lei Y 2020 Nucl. Mater. Energy 25 100847
[29] Poleshchuk K, Terentyev D, Galatanu A and Verbeken K 2025 J. Nucl. Mater. 604 155496
[30] Larsen P M 2020 ArXiv Comput. Phys.
[31] Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012
[32] Jin M M, Cao P H, Yip S and Short M P 2018 Acta Mater. 155 410
[33] Li X Y, Liu W, Xu Y C, Liu C S, Fang Q F, Pan B C, Chen J L, Luo G N and Wang Z G 2013 Nucl. Fusion 53 123014
[34] Chen F D, Tang X B, Yang Y H, Huang H, Liu J, Li H and Chen D 2016 J. Nucl. Mater. 468 164
[35] Chen X, Xie Y and Huang Y 2023 J. Mol. Model. 29 247
[36] Zhang R F, Germann T C,Wang J, Liu X Y and Beyerlein I J 2013 Scr. Mater. 68 114
[37] Zhang R F, Wang J, Beyerlein I J and Germann T C 2011 Scr. Mater. 65 1022
[38] Mara N A and Beyerlein I J 2014 J. Mater. Sci. 49 6497
[39] Beyerlein I J, Mara N A, Wang J, Carpenter J S, Zheng S J, Han W Z, Zhang R F, Kang K, Nizolek T and Pollock T M 2012 Jom 64 1192
[40] Tanemura M, Ogawa T and Ogita N 1983 J. Comput. Phys. 51 191
[41] Schilling W and Sonnenberg K 1973 J. Phys. F-Met. Phys. 3 322
[42] Eyre B L 1973 J. Phys. F Met. Phys. 3 422
[43] Gilbert M R, Arakawa K, Bergstrom Z, et al. 2021 J. Nucl. Mater. 554 153113
[44] Jourdan T and Nastar M 2022 J. Appl. Phys. 131 225103
[45] Mason D R, Das S, Derlet P M, Dudarev S L, London A J, Yu H B, Phillips NW, Yang D, Mizohata K, Xu R Q and Hofmann F 2020 Phys. Rev. Lett. 125 225503
[1] Molecular dynamics evaluation of self-diffusion coefficients in two-dimensional dusty plasmas
Muhammad Asif Shakoori, Misbah Khan, Haipeng Li(李海鹏), Aamir Shahzad, Maogang He(何茂刚), and Syed Ali Raza. Chin. Phys. B, 2025, 34(4): 045202.
[2] Molecular dynamics simulations of collision cascades in polycrystalline tungsten
Lixia Liu(刘丽霞), Mingxuan Jiang(蒋明璇), Ning Gao(高宁), Yangchun Chen(陈阳春), Wangyu Hu(胡望宇), and Hiuqiu Deng(邓辉球). Chin. Phys. B, 2025, 34(4): 046103.
[3] Elastic-plastic behavior of nickel-based single crystal superalloys with γ-γ' phases based on molecular dynamics simulations
Jing-Zhao Cao(曹景昭), Yun-Guang Zhang(张云光), Zhong-Kui Zhang(张中奎), Jiang-Peng Fan(范江鹏), Qi Dong(董琪), and Ying-Ying Fang(方盈盈). Chin. Phys. B, 2025, 34(4): 046204.
[4] Atomic origin of minor alloying element effect on glass forming ability of metallic glass
Shan Zhang(张珊), Qingan Li(李庆安), Yong Yang(杨勇), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2025, 34(3): 036105.
[5] Structural and transport properties of (Mg,Fe)SiO3 at high temperature and high pressure
Shu Huang(黄澍), Zhiyang Xiang(向志洋), Shi He(何适), Luhan Yin(尹路寒), Shihe Zhang(张时赫), Chen Chen(陈晨), Kaihua He(何开华), and Cheng Lu(卢成). Chin. Phys. B, 2025, 34(3): 036102.
[6] Exploring superconductivity in dynamically stable carbon-boron clathrates trapping molecular hydrogen
Akinwumi Akinpelu, Mangladeep Bhullar, Timothy A. Strobel, and Yansun Yao. Chin. Phys. B, 2025, 34(3): 036103.
[7] Novel high-temperature-resistant material SbLaO3 with superior hardness under high pressure
Haoqi Chen(陈浩琦), Haowen Jiang(姜皓文), Xuehui Jiang(姜雪辉), Jialin Wang(王佳琳), Chengyao Zhang(张铖瑶), Defang Duan(段德芳), Jing Dong(董晶), and Yanbin Ma(马艳斌). Chin. Phys. B, 2025, 34(2): 026201.
[8] Plastic deformation mechanism of γ-phase U-Mo alloy studied by molecular dynamics simulations
Chang Wang(王畅), Peng Peng(彭芃), and Wen-Sheng Lai(赖文生). Chin. Phys. B, 2025, 34(1): 018101.
[9] Theoretical insights into thermal transport and structural stability mechanisms of triaxial compressed methane hydrate
Dong-Sheng Chen(陈东升), Ting-Ting Miao(缪婷婷), Cheng Chang(常程), Xu-Yang Guo(郭旭洋), Meng-Yan Guan(关梦言), and Zhong-Li Ji(姬忠礼). Chin. Phys. B, 2024, 33(9): 096501.
[10] Comparative study of nudged elastic band and molecular dynamics methods for diffusion kinetics in solid-state electrolytes
Aming Lin(林啊鸣), Jing Shi(石晶), Su-Huai Wei(魏苏淮), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2024, 33(8): 086601.
[11] Structure and dynamical properties during solidification of liquid aluminum induced by cooling and compression
Min Wu(吴旻), Yong-Qi Yang(杨永琪), and Yao Wang(王垚). Chin. Phys. B, 2024, 33(7): 076301.
[12] Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
Xi Wang(王玺), Meng Tang(唐孟), Ming-Xuan Jiang(蒋明璇), Yang-Chun Chen(陈阳春), Zhi-Xiao Liu(刘智骁), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2024, 33(7): 076103.
[13] Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium
Yu-Ping Yan(晏玉平), Liu-Ting Zhang(张柳亭), Li-Pan Zhang(张丽攀), Gang Lu(芦刚), and Zhi-Xin Tu(涂志新). Chin. Phys. B, 2024, 33(7): 076201.
[14] Evolution of helium bubbles in FeCoNiCr-based high-entropy alloys containing γ nanoprecipitates
Ting Feng(冯婷), Sheng-Ming Jiang(蒋胜明), Xiao-Tian Hu(胡潇天), Zi-Jun Zhang(张子骏), Zi-Jing Huang(黄子敬), Shi-Gang Dong(董士刚), and Jian Zhang(张建). Chin. Phys. B, 2024, 33(7): 076501.
[15] Subpicosecond laser ablation behavior of a magnesium target and crater evolution: Molecular dynamics study and experimental validation
Guolong Jiang(江国龙) and Xia Zhou(周霞). Chin. Phys. B, 2024, 33(7): 077901.
No Suggested Reading articles found!