Hefei National Research Center for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
Abstract We present a comprehensive electron momentum spectroscopy study on the electronic structure of trifluorobromomethane. The binding energy spectrum and electron momentum profiles of the entire outer-valence orbitals and the first inner-valence orbital along with several shake-up states were measured by using a high-sensitivity (e, 2e) apparatus at an electron impact energy of 1213 eV. Theoretical calculations employing the density functional theory with B3LYP hybrid functional and the symmetry-adapted cluster configuration-interaction method were performed to interpret the experimental results. Important effects of electron correlations in the initial neutral and final ionic states on the electron momentum profiles have been observed.
Guangqing Chen(陈广庆), Shanshan Niu(牛珊珊), Yaguo Tang(唐亚国), Yuting Zhang(张雨亭), Zhaohui Liu(刘朝辉), Chunkai Xu(徐春凯), Enliang Wang(王恩亮), Xu Shan(单旭), and Xiangjun Chen(陈向军) Electron momentum spectroscopy study on trifluorobromomethane: Electronic structure and electron correlation 2025 Chin. Phys. B 34 043401
[1] Gann R G 1975 Halogenated Fire Suppressants (Washington, D.C.: American Chemical Society) p. 1 [2] Miziolek A W and Tsang W 1995 Halon Replacements: Technology and Science (Washington, DC: American Chemical Society) p. 1 [3] Casias C R and Thomas McKinnon J 1998 Symp. (Int.) Combust. 27 2731 [4] Westbrook C K 1983 Combust. Sci. Technol. 34 201 [5] Noto T, Babushok V, Burgess D R, Hamins A, TsangWand Miiolek A 1996 Symp. (Int.) Combust. 26 1377 [6] Osorio C H, Vissotski A J, Petersen E L and Mannan M S 2013 Combust. Flame 160 1044 [7] Doucet J, Sauvageau P and Sandorfy C 1973 J. Chem. Phys. 58 3708 [8] Doucet J, Gilbert R, Sauvageau P and Sandorfy C 1975 J. Chem. Phys. 62 366 [9] Cvitaš T, Güsten H, Klasinc L, Novadj I and Vančik H 1977 Z. Naturforsch. A 32 1528 [10] Novak I, Benson J M and Potts A W 1986 Chem. Phys. 104 153 [11] Bozek J D, Bancro G M, Cutler J N, Tan K H, Yates B W and Tse J S 1989 Chem. Phys. 132 257 [12] Johnson J, Cutler J N, Bancroft G M, Hu Y F and Tan K H 1997 J. Phys. B: At., Mol. Opt. Phys. 30 4899 [13] McCarthy I E and Weigold E 1991 Rep. Prog. Phys. 54 789 [14] Brion C E 1986 Int. J. Quantum Chem. 29 1397 [15] Coplan M A, Moore J H and Doering J P 1994 Rev. Mod. Phys. 66 985 [16] Takahashi M 2009 Bull. Chem. Soc. Jpn. 82 751 [17] Ren X G, Ning C G, Deng J K, Zhang S F, Su G L, Huang F and Li G Q 2005 Phys. Rev. Lett. 94 163201 [18] Niu S S, Tang Y G, Liu Z H, Shi Y F, Wang E L, Shan X and Chen X J 2019 Phys. Rev. A 99 022512 [19] Huang C W, Shan X, Zhang Z, Wang E L, Li Z J and Chen X J 2010 J. Chem. Phys. 133 124303 [20] Tian Q G, Yang J, Shi Y F, Shan X and Chen X J 2012 J. Chem. Phys. 136 094306 [21] Miao Y R, Ning C G, Liu K and Deng J K 2011 J. Chem. Phys. 134 204304 [22] Miao Y R, Ning C G and Deng J K 2011 Phys. Rev. A 83 062706 [23] Minchinton A, Cook J P D,Weigold E and von Niessen W 1987 Chem. Phys. 113 251 [24] Takahashi M, Ogino R and Udagawa Y 1998 Chem. Phys. Lett. 288 714 [25] Shan X, Chen X J, Zhou L X, Li Z J, Liu T, Xue X X and Xu K Z 2006 J. Chem. Phys. 125 154307 [26] Zhang Y T, Shan X, Huang C W, Zhang Z and Chen X J 2022 J. Electron Spectrosc. Relat. Phenom. 258 147226 [27] Watanabe N, Chen X J and Takahashi M 2012 Phys. Rev. Lett. 108 173201 [28] Wu X J, Chen X J, Chen L Q, Li Z J, Yang X F, Shan X, Zheng Y Y and Xu K Z 2005 Chin. Phys. Lett. 22 1649 [29] Tian Q G, Wang K D, Shan X and Chen X J 2011 Rev. Sci. Instrum. 82 033110 [30] Becke A D 1993 J. Chem. Phys. 98 5648 [31] Lee C, Yang W T and Parr R G 1988 Phys. Rev. B 37 785 [32] Nakatsuji H 1991 Chem. Phys. Lett. 177 331 [33] Dunning T H, Jr. 1989 J. Chem. Phys. 90 1007 [34] Jagutzki O, Cerezo A, Czasch A, Dorner R, Hattas M, Min H, Mergel V, Spillmann U, Ullmann-Pfleger K,Weber T, Schmidt-Bocking H and Smith G D W 2002 IEEE Trans. Nucl. Sci. 49 2477 [35] Duffy P, Chong D P, Casida M E and Salahub D R 1994 Phys. Rev. A 50 4707 [36] Frisch M J, Trucks G, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G S, Sonnenberg J, Hada M and Fox D, Gaussian, Inc., Wallingford CT, 2009 [37] Duffy P, Cassida M E, Brion C E and Chong D P 1992 Chem. Phys. 159 347 [38] Watanabe N, Yamazaki M and Takahashi M 2012 J. Chem. Phys. 137 114301 [39] Tang Y G, Shan X, Yang J, Niu S S, Zhang Z, Watanabe N, Yamazaki M, Takahashi M and Chen X J 2016 J. Phys. Chem. A 120 6855 [40] Gong M M, Zhang Y T, Li X Y, Zhang S B, Shan X and Chen X J 2022 Phys. Rev. A 105 042805 [41] Zhang Y T, Gong M M, Liu Z H, Niu S S, Shan X and Chen X J 2023 J. Phys. Chem. A 127 1252
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.