Nonclassicality of photons in mean-field anisotropic quantum light-matter interacting lattices: Two-photon correlation function and quadrature squeezing
Xu-Min Chen(陈许敏)1, Pei-Yao Chen(陈佩瑶)1, and Chen Wang(王晨)2,†
1 Department of Physics, Hangzhou Dianzi University, Hangzhou 310018, China; 2 Department of Physics, Zhejiang Normal University, Jinhua 321004, China
Abstract The generation of nonclassical photons via quantum light–matter interactions is of fundamental importance in quantum optics. Here we investigate steady-state two-photon correlation function and photon squeezing in an open anisotropic Rabi lattice by applying quantum dressed master equation embedded with the mean-field approximation. The expanded antibunching effect of photons due to anisotropic qubit–photon interaction, is strongly suppressed by including inter-site photon tunneling, whereas the giant photon bunching keeps robust with weak inter-site photon tunneling strength. The microscopic processes for photon antibunching and bunching effects are presented based on incoherent transitions between eigenstates. The photon squeezing is also analyzed under the influences of qubit–photon coupling and anisotropic factor. The quadrature squeezing shows persistency by tuning on the inter-site photon tunneling, and becomes dramatically pronounced at the small anisotropic factor. Moreover, the increasing number of qubits significantly enhances quadrature squeezing with strong qubit–photon interaction. We hope such results may provide physical insights into efficient generation and manipulation of nonclassical features of photons in quantum light–matter interacting lattice systems.
(Coherent control of atomic interactions with photons)
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874011) and the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology.
Corresponding Authors:
Chen Wang
E-mail: wangchen@zjnu.cn
Cite this article:
Xu-Min Chen(陈许敏), Pei-Yao Chen(陈佩瑶), and Chen Wang(王晨) Nonclassicality of photons in mean-field anisotropic quantum light-matter interacting lattices: Two-photon correlation function and quadrature squeezing 2025 Chin. Phys. B 34 044201
[1] Tannoudji C C, Roc J D and Grynberg G 1998 Atom-photon interactions:basic processes and applications (New York:John Wiley and Sons) [2] Haroche S, Brune M and Raimond J M 2020 Nat. Phys. 16 243 [3] Blais A, Girvin S M and Oliver W D 2020 Nat. Phys. 16 247 [4] Scully M O, Zubairy M S, Agarwal G S and Walther H 2003 Science 299 862 [5] Ronzani A, Karimi B, Senior J, Chang Y C, Peltonen J T, Chen C D and Pekola J P 2018 Nat. Phys. 14 991 [6] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565 [7] Blais A, Grimsmo A L, Girvin S M and Wallraff A 2021 Rev. Mod. Phys. 93 025005 [8] Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hummer T, Solano E, Marx A and Gross R 2010 Nat. Phys. 6 772 [9] Yoshihara F, Fuse T, Ashhab S, Kakuyanagi K, Saito S and Semba K 2017 Nat. Phys. 13 44 [10] Kockum A F, Miranowicz A, Liberato S De, Savasta S and Nori F 2019 Nat. Rev. Phys. 1 19 [11] Forn-Díaz P, Lamata L, Rico E, Kono J and Solano E 2019 Rev. Mod. Phys. 91 025005 [12] Xie Q T, Cui S, Cao J P, Amico J and Fan H 2014 Phys. Rev. X 4 021046 [13] Tomka M, Araby O E, Pletyukhov M and Gritsev V 2014 Phys. Rev. A 90 063839 [14] Zhang Y Y and Chen X Y 2017 Phys. Rev. A 96 063821 [15] Forn-Díaz P, Lisenfeld J, Marcos D, García-Ripoll J J, Solano E, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 237001 [16] Rashba E I 1960 Sov. Phys. Solid State 2 1109 [17] Dresselhaus G 1955 Phys. Rev. 100 580 [18] Hwang M J, Kim M S and Choi M S 2016 Phys. Rev. Lett. 116 153601 [19] Mao B B, Li L S, You W L and Liu M X 2021 Physica A 564 125534 [20] Ma K K W 2020 Phys. Rev. A 102 053709 [21] Zhang Y Y, Hu Z X, Fu L B, Luo H G, Pu H and Zhang X F 2021 Phys. Rev. Lett. 127 063602 [22] Hartmann M, Brandao F and Plenio M 2006 Nat. Phys. 2 849 [23] Greentree A D, Tahan C, Cole J H and Hollenberg L C 2006 Nat. Phys. 2 856 [24] Koch J and Hur K L 2009 Phys. Rev. A 80 023811 [25] Hwang M J and Plenio M 2016 Phys. Rev. Lett. 117 123602 [26] Chen Z H, Wang F Y, Chen H, Lu J C and Wang C 2023 Chin. Phys. Lett. 40 050501 [27] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221 [28] Kimble H J 2008 Nature 453 1023 [29] Zhou L, Yang L P, Li Y and Sun C P 2013 Phys. Rev. Lett. 111 103604 [30] Peng J, Zheng J C, Yu J, Tang P H, Barrios G A, Zhong J X, Solano E, Arriagada F A and Lamata L 2021 Phys. Rev. Lett. 127 043604 [31] Hur K L, Henriet L, Petrescu A, Plekhanov K, Roux G and Schiro M 2016 C. R. Phys. 17 808 [32] Carusotto I and Ciuti C 2013 Rev. Mod. Phys. 85 299 [33] Zheng H and Takada Y 2011 Phys. Rev. A 84 043819 [34] Schiro M, Bordyuh M, Oztop B and Tureci H E 2012 Phys. Rev. Lett. 109 053601 [35] Lu Y C and Wang C 2016 Quantum Inf. Process. 15 4347 [36] Ma J L, Liu B B, Li Q, Guo Z X, Tan L and Ying L 2024 Phys. Rev. A 109 033703 [37] Azzam S I, Shalaev V M, Boltasseva A and Kildishev A V 2018 Phys. Rev. Lett. 121 253901 [38] Aigner A, Tittl A, Wang J, Weber T, Kivshar Y, Maier S A and Ren H R 2022 Sci. Adv. 8 eadd4816 [39] Hu Z C, Bongiovanni D, Jukic D, Jajtic E, Xia S Q, Song D H, Xu J J, Morandotti R, Buljan H and Chen Z G 2021 Light:Sci. Appl. 10 164 [40] Jurgensen M, Mukherjee S and Rechtsman M C 2021 Nature 596 63 [41] Wang P, Fu Q D, Peng R H, Kartashov Y V, Torner L, Konotop V V and Ye F W 2022 Nat. Commun. 13 6738 [42] Roy D, Wilson C M and Firstenberg O 2017 Rev. Mod. Phys. 89 021001 [43] Chang D E, Douglas J, Gonzalez-Tudela A, Hung C L and Kimble H J 2018 Rev. Mod. Phys. 90 031002 [44] Uppu R, Pedersen F T, Wang Y, Olesen C T, Papon C, Zhou X Y, Midolo L, Scholz S, Wieck A D, Ludwig A and Lodahl P 2020 Sci. Adv. 6 eabc8268 [45] Zhang J F, Chattaraj S, Huang Q, Jordao L, Lu S Y and Madhukar A 2022 Sci. Adv. 8 eabn9252 [46] Rabl P 2011 Phys. Rev. Lett. 107 063601 [47] Ding Z and Zhang Y 2022 Chin. Phys. B 31 070304 [48] Ridolfo A, Leib M, Savasta S and Hartmann M 2012 Phys. Rev. Lett. 109 193602 [49] Carmichael H J 1999 Statistical Methods in Quantum Optics 1, Master Equations and Fokker Planck Equations (Springer) [50] Zhang X Y, Wang J S, Wang L, Meng X G and Liang B L 2022 Chin. Phys. B 31 054205 [51] Stoler D 1970 Phys. Rev. D 1 3217 [52] Stoler D 1971 Phys. Rev. D 4 1925 [53] Ficek Z and Drummond P D 1997 Phys. Today 50 34 [54] Glauber R J 1963 Phys. Rev. 130 2529 [55] Beaudoin F, Gambetta J M and Blais A 2011 Phys. Rev. A 84 043832 [56] Settineri A, Macri V, Ridolfo A, Stefano O Di, Kockum A F, Nori F and Savasta S 2018 Phys. Rev. A 98 053834 [57] Ridolfo A, Savasta S and Hartmann M 2013 Phys. Rev. Lett. 110 163601 [58] Loudon R and Knight P 1987 J. Mod. Opt. 34 709 [59] Kolobov M I 1999 Rev. Mod. Phys. 71 1539 [60] Gerry C and Knight P 2004 Introductory Quantum Optics (London: Cambridge University Press) [61] Kronwald A, Marquardt F and Clerk A A 2013 Phys. Rev. A 88 063833 [62] Wollman E E, Lei C U, Weinstein A J, Suh J, Kronwald A, Marquardt F, Clerk A A and Schwab K C 2015 Science 349 952 [63] Liao J Q and Law C K 2011 Phys. Rev. A 83 033820 [64] Lv X Y, Liao J Q, Tian L and Nori F 2015 Phys. Rev. A 91 013834 [65] Xie J K, Ma S L, Ren Y L, Li X K and Li F L 2020 Phys. Rev. A 101 012348 [66] Wang C, Chen H and Liao J Q 2021 Phys. Rev. A 104 033701 [67] Hohenadler M, Aichhorn M, Pollet L and Schmidt S 2012 Phys. Rev. A 85 013810 [68] Dimer F, Estienne B, Parkins A S and Carmichael H J 2007 Phys. Rev. A 75 013804 [69] Buijsman W, Gritsev V and Sprik R 2017 Phys. Rev. Lett. 118 080601 [70] Houck A A, Tureci H E and Koch J 2012 Nat. Phys. 8 292 [71] Raftery J, Sadri D, Schmidt S, Tureci H E and Houck A A 2014 Phys. Rev. X 4 031043 [72] Weiss U 2012 Quantum Dissipative Dynamics (Singapore:World Scientific) [73] Glauber R J 1963 Phys. Rev. 130 2529 [74] Walls D F 1983 Nature 306 5939 [75] Andersen U L, Gehring T, Marquardt C and Leuchs G 2016 Phys. Scr. 91 053001 [76] Ma J, Wang X G, Sun C P and Nori F 2011 Phys. Rep. 509 89 [77] Ren R J, Lu Y H, Jiang Z K, Gao J, Zhou W H, Wang Y, Jiao Z Q, Wang X W, Solntsev A S and Jin X M 2022 Photon. Res. 10 456 [78] Zhu H H, Chen H S, Chen T, Li Y, Luo S B, Karim M F, Luo X S, Gao F, Li Q, Cai H, Chin L K, Kwek L C, Norden B, Zhang X D and Liu A Q 2024 Nat. Commun. 15 6057
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.