Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 020308    DOI: 10.1088/1674-1056/ad9ff7
SPECIAL TOPIC — Quantum communication and quantum network Prev   Next  

Mask-coding-assisted continuous-variable quantum direct communication with orbital angular momentum multiplexing

Zhengwen Cao(曹正文), Yujie Wang(王禹杰), Geng Chai(柴庚)†, Xinlei Chen(陈欣蕾), and Yuan Lu(卢缘)
Laboratory of Quantum Information & Technology, School of Information Science and Technology, Northwest University, Xi'an 710127, China
Abstract  Quantum secure direct communication (QSDC) is a communication method based on quantum mechanics and it is used to transmit secret messages. Unlike quantum key distribution, secret messages can be transmitted directly on a quantum channel with QSDC. Higher channel capacity and noise suppression capabilities are key to achieving long-distance quantum communication. Here, we report a continuous-variable QSDC scheme based on mask-coding and orbital angular momentum, in which the mask-coding is employed to protect the security of the transmitting messages and to suppress the influence of excess noise. The combination of orbital angular momentum and information block transmission effectively improves the secrecy capacity. In the 800 information blocks×1310 bits length 10-km experiment, the results show a statistical average bit error rate of 0.38 %, a system excess noise value of 0.0184 SNU, and a final secrecy capacity of 6.319$\times10^{6}$ bps. Therefore, this scheme reduces error bits while increasing secrecy capacity, providing a solution for long-distance large-scale quantum communication, which is capable of transmitting text, images and other information of reasonable size.
Keywords:  continuous-variable quantum direct communication      orbital angular momentum      mask coding  
Received:  26 September 2024      Revised:  06 December 2024      Accepted manuscript online:  17 December 2024
PACS:  03.67.Hk (Quantum communication)  
  03.67.Bg (Entanglement production and manipulation)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62071381 and 62301430), Shaanxi Fundamental Science Research Project for Mathematics and Physics (Grant No. 23JSY014), Scientific Research Plan Project of Shaanxi Education Department (Natural Science Special Project (Grant No. 23JK0680)), and Young Talent Fund of Xi’an Association for Science and Technology (Grant No. 959202313011).
Corresponding Authors:  Geng Chai     E-mail:  chai.geng@nwu.edu.cn

Cite this article: 

Zhengwen Cao(曹正文), Yujie Wang(王禹杰), Geng Chai(柴庚)†, Xinlei Chen(陈欣蕾), and Yuan Lu(卢缘) Mask-coding-assisted continuous-variable quantum direct communication with orbital angular momentum multiplexing 2025 Chin. Phys. B 34 020308

[1] Pirandola S, Andersen U L, Banchi L, et al. 2020 Advances in Optics and Photonics 12 1012
[2] Bennett C H and Brassard G 2014 Theoretical Computer Science 560 7
[3] Cao Z W, Chen X L, Chai G, Liang K X and Yuan Y 2023 Phys. Rev. Applied 19 044023
[4] Jouguet P, Kunz-Jacques S, Diamanti E, et al. 2012 Phys. Rev. A 86 032309
[5] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[6] Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902
[7] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[8] Pan D, Long G L, Yin L, et al. 2024 IEEE Communications Surveys& Tutorials 26 1898
[9] Beige A, Englert B G, Kurtsiefer C and Weinfurter H 2002 J. Phys. A: Math. Gen. 35 L407
[10] Beige A, Englert B G, Kurtsiefer C and Weinfurter H 2001 arXiv:quant-ph/0111106[quant-ph]
[11] Cai Q Y and Li B W 2004 Phys. Rev. A 69 054301
[12] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[13] Deng F G and Long G L 2004 Phys. Rev. A 69 052319
[14] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[15] Ekert A K 1991 Phys. Rev. Lett. 67 661
[16] Wang C, Deng F G and Long G L 2005 Opt. Commun. 253 15
[17] Jin X R, Ji X, Zhang Y Q, Zhang S, Hong S K, Yeon K H and Um C I 2006 Phys. Lett. A 354 67
[18] Sun Z, Qi R, Lin Z, Yin L, Long G and Lu J 2018 IEEE Globecom Workshops (GC Wkshps), December 09-13, 2018, Abu Dhabi, United Arab Emirates, p. 1
[19] Sun Z, Song L, Huang Q, et al. 2020 IEEE Transactions on Communications 68 5778
[20] Zhou L, Sheng Y B and Long G L 2020 Science Bulletin 65 12
[21] Zhou L, Xu B W, Zhong W, et al. 2023 Phys. Rev. Applied 19 014036
[22] Zhou Z R, Sheng Y B, Niu P H, et al. 2020 Sci. China Phys. Mech. Astron. 63 230362
[23] Yan Y F, Zhou L, Zhong W and Sheng Y B 2021 Front. Phys. 16 11501
[24] Hong Y P, Zhou L, Zhong W, et al. 2023 Quantum Inf. Process 22 111
[25] Zhou L, Xu B W, Zhong W and Sheng Y B 2023 Phys. Rev. Applied 19 014036
[26] Zhang W, Ding D S, Sheng Y B, Zhou L, Shi B S and Guo G C 2017 Phys. Rev. Lett. 118 220501
[27] Zhu F, Zhang W, Sheng Y and Huang Y 2017 Science Bulletin 62 1519
[28] Qi R Y, Sun Z, Lin Z S, et al. 2019 Light Sci. Appl. 8 22
[29] Cao Z, Lu Y, Chai G, Yu H, Liang K X and Wang L 2023 Research 6 0193
[30] Wang L, Chai G, Cao Z W and Chen X L 2025 Sci. China Phys. Mech. Astron. 68 220313
[31] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
[32] Mafu M, Dudley A, Goyal S, et al. 2013 Phys. Rev. A 88 032305
[33] Cheng W, Guilley S and Danger J L 2022 IEEE Transactions on Information Forensics and Security 17 1624
[34] Cao Z W, Chen X L, Chai G and Peng J Y 2023 Laser Phys. Lett. 20 045201
[35] Li D, Huang P, Zhou Y, et al. 2018 IEEE Photonics Journal 10 1
[36] Long G L and Zhang H 2021 Science Bulletin 13 1267
[37] Srikara S, Thapliyal K and Pathak A 2020 Quantum Inf. Process 19 132
[38] Cao Z, Wang L, Liang K, Chai G and Peng J Y 2021 Phys. Rev. Applied 16 024012
[39] Jin D, Guo Y, Wang Y J and Huang D 2020 J. Appl. Phys. 127 213102
[40] Liang K X, Cao Z W, Chen X L, Wang L, Chai G and Peng J Y 2023 Front. Phys. 18 51301
[41] Wu J W, Lin Z S, Yin L G and Long G L 2019 Quantum Engineering 1 51301
[42] Yan Z H, Jia X J, Su X L, Duan Z Y, Xie C D and Peng K C 2005 Phys. Rev. A 85 040305(R)
[43] Chai G, Yuan Y, Cao Z W, Yu H, Chen X L and Peng J Y 2023 Phys. Rev. Applied 20 054037
[44] Rendell R W and Rajagopal A K 2005 Phys. Rev. A 72 012330
[45] Jouguet P, Kunz-Jacques S, Diamanti E and Leverrier A 2012 Phys. Rev. A 86 032309
[46] Chai G, Liang K X, Liu W Q, Huang P, Cao Z W and Zeng G H 2019 Int. J. Theor. Phys. 5 3746
[1] Effectively modulating spatial vortex four-wave mixing in a diamond atomic system
Nuo Ba(巴诺), Ming-Qi Jiang(姜明奇), Jin-You Fei(费金友), Dan Wang(王丹), Hai-Lin Jiang(蒋海林), Lei Wang(王磊), and Hai-Hua Wang(王海华). Chin. Phys. B, 2024, 33(4): 044202.
[2] Generation of orbital angular momentum hologram using a modified U-net
Zhi-Gang Zheng(郑志刚), Fei-Fei Han(韩菲菲), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2024, 33(3): 034207.
[3] Properties of focused Laguerre-Gaussian beam propagating in anisotropic ocean turbulence
Xinguang Wang(王新光), Yangbin Ma(马洋斌), Qiujie Yuan(袁邱杰), Wei Chen(陈伟), Le Wang(王乐), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(2): 024208.
[4] Optical image watermarking based on orbital angular momentum holography
Jialong Zhu(朱家龙), Jiaying Ji(季佳滢), Le Wang(王乐), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(12): 124202.
[5] Deep-learning-assisted optical communication with discretized state space of structured light
Minyang Zhang(张敏洋), Dong-Xu Chen(陈东旭), Pengxiang Ruan(阮鹏祥), Jun Liu(刘俊), Dong-Zhi Fu(付栋之), Jun-Long Zhao(赵军龙), and Chui-Ping Yang(杨垂平). Chin. Phys. B, 2024, 33(12): 120304.
[6] Dynamic properties of the magnetic skyrmion driven by electromagnetic waves with spin angular momentum and orbital angular momentum
Longfei Guo(郭龙飞), Bing Zha(查兵), Xiaoqiao Sun(孙晓乔), Songmei Ni(倪松梅), Ruiyu Huang(黄瑞玉), Lin Chen(陈琳), and Zhikuo Tao(陶志阔). Chin. Phys. B, 2024, 33(11): 117501.
[7] Bessel—Gaussian beam-based orbital angular momentum holography
Jiaying Ji(季佳滢), Zhigang Zheng(郑志刚), Jialong Zhu(朱家龙), Le Wang(王乐), Xinguang Wang(王新光), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(1): 014204.
[8] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[9] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[10] Tailoring OAM spectrum of high-order harmonic generation driven by two mixed Laguerre-Gaussian beams with nonzero radial nodes
Beiyu Wang(汪倍羽), Jiaxin Han(韩嘉鑫), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(12): 124208.
[11] Calibration of quantitative rescattering model for simulating vortex high-order harmonic generation driven by Laguerre-Gaussian beam with nonzero orbital angular momentum
Jiaxin Han(韩嘉鑫), Zhong Guan(管仲), Beiyu Wang(汪倍羽), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(12): 124210.
[12] Spin splitting of vortex beams on the surface of natural biaxial hyperbolic materials
Hong Liang(梁红), Haoyuan Song(宋浩元), Yubo Li(李宇博), Di Yu(于迪), and Shufang Fu(付淑芳). Chin. Phys. B, 2023, 32(12): 124212.
[13] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[14] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[15] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
No Suggested Reading articles found!