CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Optical signature of flat bands in topological hourglass semimetal Nb3SiTe6 |
Shize Cao(曹仕泽)1,2,†, Cuiwei Zhang(张翠伟)2,†, Yueshan Xu(徐越山)2,†, Jianzhou Zhao(赵建洲)3,‡, Youguo Shi(石友国)2,4, Yun-Ze Long(龙云泽)1,§, Jianlin Luo(雒建林)2,4, and Zhi-Guo Chen(谌志国)2,4,¶ |
1 Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 Co-Innovation Center for New Energetic Materials, Southwest University of Science and Technology, Mianyang 621010, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract Flat electronic bands in condensed matter provide a rich avenue for exploring novel quantum phenomena. Here, we report an optical spectroscopy study of a topological hourglass semimetal Nb$_{3}$SiTe$_{6}$ with the electric field of the incident light parallel to its crystalline $ab$-plane. The $ab$-plane optical conductivity spectra of Nb$_{3}$SiTe$_{6}$ single crystals exhibit a remarkable peak-like feature around 1.20 eV, which is mainly contributed by the direct optical transitions between the two ab-initio-calculation-derived flat bands along the momentum direction $Z$-$U$. Our results pave the way for investigating exotic quantum phenomena based on the flat bands in topological hourglass semimetals.
|
Received: 03 November 2024
Revised: 12 December 2024
Accepted manuscript online: 13 December 2024
|
PACS:
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
73.21.-b
|
(Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)
|
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
Fund: Project supported by the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021B1515130007), the National Natural Science Foundation of China (Grant Nos. U21A20432 and 52273077), the National Key Research and Development Program of China (Grant No. 2022YFA1403800), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000), and the Synergetic Extreme Condition User Facility (SECUF, https://cstr.cn/31123.02.SECUF)-Infrared Unit in THz and Infrared Experimental Station. |
Corresponding Authors:
Jianzhou Zhao, Yun-Ze Long, Zhi-Guo Chen
E-mail: jzzhao@swust.edu.cn;yunze.long@qdu.edu.cn;zgchen@iphy.ac.cn
|
Cite this article:
Shize Cao(曹仕泽), Cuiwei Zhang(张翠伟), Yueshan Xu(徐越山), Jianzhou Zhao(赵建洲), Youguo Shi(石友国), Yun-Ze Long(龙云泽), Jianlin Luo(雒建林), and Zhi-Guo Chen(谌志国) Optical signature of flat bands in topological hourglass semimetal Nb3SiTe6 2025 Chin. Phys. B 34 027101
|
[1] Wang Y F, Gu Z C, Gong C D and Sheng D N 2011 Phys. Rev. Lett. 107 146803 [2] Lu Z, Han T, Yao Y, Reddy A P, Yang J, Seo J, Watanabe K, Taniguchi T, Fu L and Ju L 2024 Nature 626 759 [3] Wang Y F, Yao H, Gong C D and Sheng D N 2012 Phys. Rev. B 86 201101 [4] Zeng T S and Sheng D N 2018 Phys. Rev. B 97 035151 [5] Zhu W, Sheng D N and Haldane F D M 2013 Phys. Rev. B 88 035122 [6] Balents L, Dean C R, Efetov D K and Young A F 2020 Nat. Phys. 16 725 [7] Tian H, Gao X, Zhang Y, Che S, Xu T, Cheung P, Watanabe K, Taniguchi T, Randeria M, Zhang F, Lau C N and Bockrath M W 2023 Nature 614 440 [8] Kauppila V J, Aikebaier F and Heikkilä T T 2016 Phys. Rev. B 93 214505 [9] Iglovikov V I, Hébert F, Grémaud B, Batrouni G G and Scalettar R T 2014 Phys. Rev. B 90 094506 [10] Imada M and Kohno M 2000 Phys. Rev. Lett. 84 143 [11] Hofmann J S, Berg E and Chowdhury D 2023 Phys. Rev. Lett. 130 226001 [12] Khasanov R, Ruan B B, Shi Y Q, Chen G F, Luetkens H, Ren Z A and Guguchia Z 2024 Nat. Commun. 15 2197 [13] Tang E and Fu L 2014 Nat. Phys. 10 964 [14] Su X F, Gu Z L, Dong Z Y, Yu S L and Li J X 2019 Phys. Rev. B 99 014407 [15] Repellin C, Dong Z, Zhang Y H and Senthil T 2020 Phys. Rev. Lett. 124 187601 [16] Kusakabe K and Aoki H 1994 Phys. Rev. Lett. 72 144 [17] Pons R, Mielke A and Stauber T 2020 Phys. Rev. B 102 235101 [18] Arita R, Shimoi Y, Kuroki K and Aoki H 1998 Phys. Rev. B 57 10609 [19] Lin Z, Choi J H, Zhang Q, Qin W, Yi S, Wang P, Li L, Wang Y, Zhang H, Sun Z, Wei L, Zhang S, Guo T, Lu Q, Cho J H, Zeng C and Zhang Z 2018 Phys. Rev. Lett. 121 096401 [20] Li Z, Zhuang J,Wang L, Feng H, Gao Q, Xu X, HaoW,Wang X, Zhang C,Wu K, Dou S X, Chen L, Hu Z and Du Y 2018 Sci. Adv. 4 eaau4511 [21] Chen X Z, Wang L, Zhang S, Zhang R J, Cheng Y W, Hu Y D, Meng C N, Liu Z T, Lv B Q and Huang Y B 2024 Chin. Phys. B 33 087402 [22] Ye J, Lin Y,Wang H, Song Z, Feng J, XieWand Jia S 2024 Chin. Phys. B 33 057103 [23] Kang M, Fang S, Ye L, Po H C, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G and Comin R 2020 Nat. Commun. 11 4004 [24] Okamoto S, Mohanta N, Dagotto E and Sheng D N 2022 Commun. Phys. 5 198 [25] Kang M, Ye L, Fang S, et al. 2020 Nat. Mater. 19 163 [26] Liu Z, Li M, Wang Q, Wang G, Wen C, Jiang K, Lu X, Yan S, Huang Y, Shen D, Yin J X, Wang Z, Yin Z, Lei H and Wang S 2020 Nat. Commun. 11 4002 [27] Yin J X, Zhang S S, Chang G, et al. 2019 Nat. Phys. 15 443 [28] Li M, Wang Q, Wang G, Yuan Z, Song W, Lou R, Liu Z, Huang Y, Liu Z, Lei H, Yin Z and Wang S 2021 Nat. Commun. 12 3129 [29] Di Sante D, Bigi C, Eck P, Enzner S, Consiglio A, Pokharel G, Carrara P, Orgiani P, Polewczyk V, Fujii J, King P D C, Vobornik I, Rossi G, Zeljkovic I,Wilson S D, Thomale R, Sangiovanni G, Panaccione G and Mazzola F 2023 Nat. Phys. 19 1135 [30] Zhang H, Shi Z, Jiang Z, Yang M, Zhang J, Meng Z, Hu T, Liu F, Cheng L, Xie Y, Zhuang J, Feng H, HaoW, Shen D and Du Y 2023 Adv. Mater. 35 2301790 [31] Han M, Inoue H, Fang S, John C, Ye L, Chan M K, Graf D, Suzuki T, Ghimire M P, Cho W J, Kaxiras E and Checkelsky J G 2021 Nat. Commun. 12 5345 [32] Jiang Z, Liu Z, Ma H, Xia W, Liu Z, Liu J, Cho S, Yang Y, Ding J, Liu J, Huang Z, Qiao Y, Shen J, Jing W, Liu X, Liu J, Guo Y and Shen D 2023 Nat. Commun. 14 4892 [33] Sun Z, Zhou H, Wang C, Kumar S, Geng D, Yue S, Han X, Haraguchi Y, Shimada K, Cheng P, Chen L, Shi Y, Wu K, Meng S and Feng B 2022 Nano Lett. 22 4596 [34] Huang H, Zheng L, Lin Z, Guo X, Wang S, Zhang S, Zhang C, Sun Z, Wang Z, Weng H, Li L, Wu T, Chen X and Zeng C 2022 Phys. Rev. Lett. 128 096601 [35] Ye L, Fang S, Kang M, Kaufmann J, Lee Y, John C, Neves P M, Zhao S Y F, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Bell D C, Janson O, Comin R and Checkelsky J G 2024 Nat. Phys. 20 610 [36] Ghimire N J and Mazin I I 2020 Nat. Mater. 19 137 [37] Yang J, Yi X, Zhao Z, et al. 2023 Nat. Commun. 14 4089 [38] Multer D, Yin J X, Hossain M S, Yang X, Sales B C, Miao H, Meier W R, Jiang Y X, Xie Y, Dai P, Liu J, Deng H, Lei H, Lian B and Zahid Hasan M 2023 Commun. Mater. 4 17 [39] Peng S, Han Y, Pokharel G, Shen J, Li Z, Hashimoto M, Lu D, Ortiz B R, Luo Y, Li H, Guo M, Wang B, Cui S, Sun Z, Qiao Z, Wilson S D and He J 2021 Phys. Rev. Lett. 127 266401 [40] Xing S, Zhao T, Zhou J and Sun Z 2024 J. Phys. Chem. C 128 2618 [41] Regmi S, Fernando T, Zhao Y, Sakhya A P, Dhakal G, Bin Elius I, Vazquez H, Denlinger J D, Yang J, Chu J H, Xu X, Cao T and Neupane M 2022 Commun. Mater. 3 100 [42] Lisi S, Lu X, Benschop T, et al. 2021 Nat. Phys. 17 189 [43] Lu B, Yada K, Sato M and Tanaka Y 2015 Phys. Rev. Lett. 114 096804 [44] Chen A and Franz M 2016 Phys. Rev. B 93 201105 [45] Zhou Y, Jin K H, Huang H, Wang Z and Liu F 2019 Phys. Rev. B 99 201105 [46] Zyuzin A A and Zyuzin A Y 2018 Phys. Rev. B 97 041203 [47] Utama M I B, Koch R J, Lee K, Leconte N, Li H, Zhao S, Jiang L, Zhu J, Watanabe K, Taniguchi T, Ashby P D, Weber Bargioni A, Zettl A, Jozwiak C, Jung J, Rotenberg E, Bostwick A and Wang F 2021 Nat. Phys. 17 184 [48] Ma N, Wang D Y, Huang B R, Li K Y, Song J P, Liu J Z, Mei H P, Ye M and Li A 2023 Chin. Phys. B 32 056801 [49] Liu H, Cao Y, Xu Y, Gawryluk D J, Pomjakushina E, Gao S Y, Dudin P, Shi M, Yan L, Yang Y f and Ding H 2020 Phys. Rev. B 102 035111 [50] Song Z D and Bernevig B A 2022 Phys. Rev. Lett. 129 047601 [51] Li S, Liu Y, Wang S S, Yu Z M, Guan S, Sheng X L, Yao Y and Yang S A 2018 Phys. Rev. B 97 045131 [52] Liu R Y, Huang A, Sankar R, Hlevyack J A, Su C C, Weng S C, Lin M K, Chen P, Cheng C M, Denlinger J D, Mo S K, Fedorov A V, Chang C S, Jeng H T, Chuang T M and Chiang T C 2023 Nano Lett. 23 380 [53] Liu Z, Li T, Zhang B, Adam M L, Zhu W, Li Y, Wang S, Wu Y, Zhu H, Cao D, Cui Q, Cui S, Liu Y, Chen S, Sun Z and Song L 2022 iScience 25 [54] Wan Q, Yang T Y, Li S, et al. 2021 Phys. Rev. B 103 165107 [55] Hu J, Liu X, Yue C L, Liu J Y, Zhu H W, He J B, Wei J, Mao Z Q, Antipina L Y, Popov Z I, Sorokin P B, Liu T J, Adams P W, Radmanesh S M A, Spinu L, Ji H and Natelson D 2015 Nat. Phys. 11 471 [56] An L, Zhang H, Hu J, Zhu X, Gao W, Zhang J, Xi C, Ning W, Mao Z and Tian M 2018 Phys. Rev. B 97 235133 [57] Zhao Y, Cao J, Zhang Z, Li S, Li Y, Ma F and Yang S A 2023 Phys. Rev. B 107 205124 [58] Pang Y, Rezaei E, Chen D, Li S, Jian Y, Wang Q, Wang Z, Duan J, Zebarjadi M and Yao Y 2020 Phys. Rev. Mater. 4 094205 [59] Ebad Allah J, Tsirlin A A, Zhu Y L, Mao Z Q and Kuntscher C A 2023 Phys. Rev. B 107 115115 [60] DresselMand Gr üner G 2002 Electrodynamics of solids: optical properties of electrons in matter (Cambridge University Press) [61] Xu Y, Zhao J, Yi C, Wang Q, Yin Q, Wang Y, Hu X, Wang L, Liu E, Xu G, Lu L, Soluyanov A A, Lei H, Shi Y, Luo J G and Chen Z G 2020 Nat. Commun. 11 3985 [62] Hu W Z, Dong J, Li G, Li Z, Zheng P, Chen G F, Luo J L and Wang N L 2008 Phys. Rev. Lett. 101 257005 [63] Mirri C, Dusza A, Bastelberger S, Chinotti M, Degiorgi L, Chu J H, Kuo H H and Fisher I R 2015 Phys. Rev. Lett. 115 107001 [64] Nakajima M, Liang T, Ishida S, Tomioka Y, Kihou K, Lee C H, Iyo A, Eisaki H, Kakeshita T, Ito T and Uchida S 2011 Proc. Natl. Acad. Sci. USA 108 12238 [65] Moskalenko S A E and Snoke D W 2000 Bose-Einstein condensation of excitons and biexcitons: and coherent nonlinear optics with excitons (Cambridge University Press) [66] Klingshirn C F 2012 Semiconductor optics (Springer Science & Business Media) [67] Mott N F 1968 Rev. Mod. Phys. 40 677 [68] Mahan G D 1967 Phys. Rev. Lett. 18 448 [69] Mahan G D 1967 Phys. Rev. 153 882 [70] Xu Y,Wang J, Su B, Deng J, Peng C,Wu C, Zhang Q, Gu L, Luo J, Xu N, Guo J and Chen Z G 2023 Commun. Mater. 4 69 [71] Landau L D 1933 Phys. Z. Sowjet. 3 664 [72] Devreese J T and Alexandrov A S 2009 Reports on Progress in Physics 72 066501 [73] Fujioka J, Yamada R, Okawa T and Tokura Y 2021 Phys. Rev. B 103 L041109 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|