Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 026201    DOI: 10.1088/1674-1056/ad989e
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Novel high-temperature-resistant material SbLaO3 with superior hardness under high pressure

Haoqi Chen(陈浩琦)1, Haowen Jiang(姜皓文)1, Xuehui Jiang(姜雪辉)1, Jialin Wang(王佳琳)1, Chengyao Zhang(张铖瑶)1, Defang Duan(段德芳)2, Jing Dong(董晶)3,†, and Yanbin Ma(马艳斌)1,‡
1 School of Science, Harbin University of Science and Technology, Harbin 150080, China;
2 College of Physics, Jilin University, Changchun 130012, China;
3 School of Public Health, Mudanjiang Medical University, Mudanjiang 157011, China
Abstract  Perovskites have garnered significant attention in recent years. However, the presence of La atoms at the $B$-site in $ABX_3$ structures has not yet been observed. Under high pressure, perovskites exhibit unexpected phase transitions. In this study, we report the discovery of SbLaO$_3$ under ambient pressure, with a space group of $R3m$. Mechanical property calculations indicate that it is a brittle material, and it possesses a band gap of 4.0266 eV, classifying it as an insulator. We also investigate the phase at 300 GPa, where the space group shifts to $P2_{1}/m$. Additionally, the $P2_{1}/m$ phase of LaInO$_3$ under 300 GPa is explored. Ab initio molecular dynamics calculations reveal that the melting point of SbLaO$_3$ is exceptionally high. The inclusion of Sb alters the electronic structure compared with LaInO$_3$, and the Vickers hardness ($H_{\rm v}$) is estimated to reach 20.97 GPa. This research provides insights into the phase transitions of perovskites under high pressure.
Keywords:  high pressure      molecular dynamics      phase transition  
Received:  30 October 2024      Revised:  25 November 2024      Accepted manuscript online:  29 November 2024
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  21.60.De (Ab initio methods)  
  02.70.Ns (Molecular dynamics and particle methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11904067).
Corresponding Authors:  Jing Dong, Yanbin Ma     E-mail:  dongjing@mdjmu.edu.cn;mayanbin@hrbust.edu.cn

Cite this article: 

Haoqi Chen(陈浩琦), Haowen Jiang(姜皓文), Xuehui Jiang(姜雪辉), Jialin Wang(王佳琳), Chengyao Zhang(张铖瑶), Defang Duan(段德芳), Jing Dong(董晶), and Yanbin Ma(马艳斌) Novel high-temperature-resistant material SbLaO3 with superior hardness under high pressure 2025 Chin. Phys. B 34 026201

[1] Kanno S, Imamura Y and Hada M 2019 Phys. Rev. Mater. 3 075403
[2] Rong Y, Hu Y, Mei A, Tan H, Saidaminov M I, Seok S I, McGehee M D, Sargent E H and Han H 2018 Science 361 eaat8235
[3] Fu Q and Draxl C 2019 Phys. Rev. Lett. 122 046101
[4] Sweers M E, Ma Q, Donahue C M, Nordlund D, Haile S M and Seitz L C 2024 Phys. Rev. Mater. 8 055801
[5] Shellaiah M and Sun K W 2020 Chemosensors 8 2227
[6] Halali V V, Sanjayan C, Suvina V, Sakar M, Balakrishna R G, et al. 2020 Inorg. Chem. Front. 7 2702
[7] Jia Z, Cheng C, Chen X, Liu L, Ding R, Ye J, Wang J, Fu L, Cheng Y and Wu Y 2023 Materials Advances 4 79
[8] Kim M, McNally G M, Kim H H, Oudah M, Gibbs A S, Manuel P, Green R J, Sutarto R, Takayama T, Yaresko A, et al. 2022 Nat. Mater. 21 627
[9] Yuan Z, Zheng P, Peng Y, Liu R, Ma X, Wang G, Yu T and Yin Z 2022 Phys. Rev. B 105 014517
[10] Zhao W, Li L, Wu Z, Wang Y, Cao Z, Ling F, Jiang S, Xiang G, Zhou X and Hua Y 2023 J. Alloys Compd. 965 171370
[11] He X, Chen Y, Xia C, Muhammad K, Syeda Z D, Guo Y, Xie S, Liu X and Li L 2024 J. Am. Ceram. Soc. 107 2371
[12] Feng Y, Chen Y, Wang L, Wang J, Chang D, Yuan Y, Wu M, Fu R, Zhang L, Wang Q, et al. 2024 Chin. Phys. Lett. 41 063201
[13] Qin S, Zhou B, Liu Z, Ye X, Zhang X, Pan Z and Long Y 2022 Chin. Phys. B 31 097503
[14] Behara S, Poonawala T and Thomas T 2021 Nato. Sc. S. Ss. Iii. C. S. 188 110191
[15] Li Q,Wang Y, PanW, YangW, Zou B, Tang J and Quan Z 2017 Angew. Chem. Int. Ed. 56 15969
[16] Ke F, Wang C, Jia C, Wolf N R, Yan J, Niu S, Devereaux T P, Karunadasa H I, Mao W L and Lin Y 2021 Nat. Commun. 12 461
[17] Wang Y, Zhang L, Ma S, Zhao Y, Tan D and Chen B 2021 Appl. Phys. Lett. 118 231903
[18] Luo J, Xia J, Yang H, Sun C, Li N, Malik H A, Shu H, Wan Z, Zhang H, Brabec C J, et al. 2020 Nano Energy 77 105063
[19] Oyelade O V, Oyewole O, Oyewole D, Adeniji S, Ichwani R, Sanni D and Soboyejo W 2020 Sci. Rep. 10 7183
[20] Zhou H, Song Z, Grice C R, Chen C, Yang X,Wang H and Yan Y 2018 The Journal of Physical Chemistry Letters 9 4714
[21] Yukhno E, Bashkirov L, Pershukevich P, Kandidatova I, Mironova- Ulmane N and Sarakovskis A 2017 J. Lumin. 182 123
[22] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[23] Blöchl P E 1994 Phys. Rev. B 50 17953
[24] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[25] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[26] Togo A, Chaput L, Tadano T and Tanaka I 2023 J. Phys. Condens. Matter 35 353001
[27] Wei H, Yang Y, Chen S and Xiang H 2021 Nat. Commun. 12 637
[28] Laurita G, Page K, Suzuki S and Seshadri R 2015 Phys. Rev. B 92 214109
[29] Luo Y, Tian H, Li X, Chen L, Yang Y andWu D 2022 Phys. Rev. B 106 024112
[30] Li D, Liu Y, Tian F B, Wei S L, Liu Z, Duan D F, Liu B B and Cui T 2018 Front. Phys. 13 137107
[31] Whitten A E, Dittrich B, Spackman M A, Turner P and Brown T C 2004 Dalton Transactions 23-29
[32] Barrett C, Cucka P and Haefner K 1963 Acta Crystallographica 16 451
[33] Spedding F H, Daane A and Herrmann K 1956 Acta Crystallographica 9 559
[34] Mouhat F and Coudert F m c X 2014 Phys. Rev. B 90 224104
[35] Chen X Q, Niu H, Li D and Li Y 2011 Intermetallics 19 1275
[36] Ma H Y, Wang J, Qin P, Liu Y, Chen L, Wang L and Zhang L 2023 J. Mater. Sci. Technol. 183 32
[37] Stepanov R S, Radina A D, Tantardini C, Kvashnin A G and Kolobov A V 2024 Phys. Chem. Chem. Phys. 26 20984
[38] Sun C Q 2009 Prog. Mater. Sci. 54 179
[39] Sun C Q 2014 Springer Ser. Chem. Phys. 108 807
[40] Bouchet J, Bottin F, Jomard G and Zérah G 2009 Phys. Rev. B 80 094102
[41] Zha C s, Liu H, Tse J S and Hemley R J 2017 Phys. Rev. Lett. 119 075302
[1] Phase changings in the surface layers of Td-WTe2 driven by alkali-metal deposition
Yu Zhu(朱玉), Zheng-Guo Wang(王政国), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Jing-Zhi Chen(陈景芝), Yi Ou(欧仪), Li-Li Meng(孟丽丽), and Yan Zhang(张焱). Chin. Phys. B, 2025, 34(1): 017302.
[2] Plastic deformation mechanism of γ-phase U-Mo alloy studied by molecular dynamics simulations
Chang Wang(王畅), Peng Peng(彭芃), and Wen-Sheng Lai(赖文生). Chin. Phys. B, 2025, 34(1): 018101.
[3] Pressure generation under deformation in a large-volume press
Saisai Wang(王赛赛), Xinyu Zhao(赵鑫宇), Kuo Hu(胡阔), Bingtao Feng(丰丙涛), Xuyuan Hou(侯旭远), Yiming Zhang(张羿鸣), Shucheng Liu(刘书成), Yuchen Shang(尚宇琛), Zhaodong Liu(刘兆东), Mingguang Yao(姚明光), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2024, 33(9): 098104.
[4] New approach to measuring topological phase transitions utilizing Floquet technology
Xue-Ying Yang(杨雪滢), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2024, 33(9): 090305.
[5] Noise-induced phase transition in the Vicsek model through eigen microstate methodology
Yongnan Jia(贾永楠), Jiali Han(韩佳丽), and Qing Li(李擎). Chin. Phys. B, 2024, 33(9): 090501.
[6] Theoretical insights into thermal transport and structural stability mechanisms of triaxial compressed methane hydrate
Dong-Sheng Chen(陈东升), Ting-Ting Miao(缪婷婷), Cheng Chang(常程), Xu-Yang Guo(郭旭洋), Meng-Yan Guan(关梦言), and Zhong-Li Ji(姬忠礼). Chin. Phys. B, 2024, 33(9): 096501.
[7] Comparative study of nudged elastic band and molecular dynamics methods for diffusion kinetics in solid-state electrolytes
Aming Lin(林啊鸣), Jing Shi(石晶), Su-Huai Wei(魏苏淮), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2024, 33(8): 086601.
[8] First-principles study on stability and superconductivity of ternary hydride LaYHx (x =2, 3, 6 and 8)
Xiao-Zhen Yan(颜小珍), Xing-Zi Zhou(周幸姿), Chao-Fei Liu(刘超飞), Yin-Li Xu(徐寅力), Yi-Bin Huang(黄毅斌), Xiao-Wei Sheng(盛晓伟), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2024, 33(8): 086301.
[9] Topological phase transition in compressed van der Waals superlattice heterostructure BiTeCl/HfTe2
Zhilei Li(李志磊), Yinxiang Li(李殷翔), Yiting Wang(王奕婷), Wenzhi Chen(陈文执), and Bin Chen(陈斌). Chin. Phys. B, 2024, 33(8): 087102.
[10] Detecting the quantum phase transition from the perspective of quantum information in the Aubry-André model
Geng-Biao Wei(韦庚彪), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2024, 33(7): 070301.
[11] Subpicosecond laser ablation behavior of a magnesium target and crater evolution: Molecular dynamics study and experimental validation
Guolong Jiang(江国龙) and Xia Zhou(周霞). Chin. Phys. B, 2024, 33(7): 077901.
[12] Multi-functional photonic spin Hall effect sensor controlled by phase transition
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2024, 33(7): 074203.
[13] Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
Xi Wang(王玺), Meng Tang(唐孟), Ming-Xuan Jiang(蒋明璇), Yang-Chun Chen(陈阳春), Zhi-Xiao Liu(刘智骁), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2024, 33(7): 076103.
[14] Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium
Yu-Ping Yan(晏玉平), Liu-Ting Zhang(张柳亭), Li-Pan Zhang(张丽攀), Gang Lu(芦刚), and Zhi-Xin Tu(涂志新). Chin. Phys. B, 2024, 33(7): 076201.
[15] First-principles study of structural and electronic properties of multiferroic oxide Mn3TeO6 under high pressure
Xiao-Long Pan(潘小龙), Hao Wang(王豪), Lei Liu(柳雷), Xiang-Rong Chen(陈向荣), and Hua-Yun Geng(耿华运). Chin. Phys. B, 2024, 33(7): 076102.
No Suggested Reading articles found!