Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 120101    DOI: 10.1088/1674-1056/ad8b36
Special Issue: Featured Column — COMPUTATIONAL PROGRAMS FOR PHYSICS
COMPUTATIONAL PROGRAMS FOR PHYSICS   Next  

ScatterX: A software for fast processing of high-throughput small-angle scattering data

Fei Xie(谢飞), Mei Xie(解梅), Baoyu Song(宋宝玉), Qiaoyu Guo(郭桥雨), and Xuechen Jiao(焦学琛)†
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
Abstract  Scattering experiments become increasingly popular in modern scientific research, including the areas of materials, biology, chemistry, physics, etc. Besides, various types of scattering facilities have been developed recently, such as lab-based x-ray scattering equipment, national synchrotron facilities and large neutron facilities. These above-mentioned trends bring up fast-increasing data amounts of scattering data, as well as different scattering types (x-ray, neutron, laser and even microwaves). To help researchers process and analyze scattering data more efficiently, we developed a general and model-free scattering data analysis software based on matrix operation, which has the unique advantage of high throughput scattering data processing, analysis and visualization. To maximize generality and efficiency, data processing is performed based on a three-dimensional matrix, where scattering curves are saved as matrices or vectors, rather than the traditional definition of paired values. It can not only realize image batch processing, background subtraction and correction, but also analyze data according to scattering theory and model, such as radius of gyration, fractal dimension and other physical quantities. In the aspect of visualization, the software allows the modify the color maps of two-dimensional scattering images and the gradual color variation of one-dimensional curves to suit efficient data communications. In all, this new software can work as a stand-alone platform for researchers to process, analyze and visualize scattering data from different research facilities without considering different file types or formats. All codes in this manuscript are open-sourced and can be easily implemented in matrix-based software, such as MATLAB, Python and Igor.
Keywords:  scatter      fractal      correlation function      high-throughput      SVD  
Received:  30 July 2024      Revised:  09 October 2024      Accepted manuscript online:  25 October 2024
PACS:  01.50.hv (Computer software and software reviews)  
  13.85.Dz (Elastic scattering)  
  98.35.Ce (Mass and mass distribution)  
  87.14.E- (Proteins)  
Fund: Project supported by School Project Cultivation Fund (Grant No. WK2310000101) and Anhui Provincial Natural Science Foundation (Grant No. 2308085MA19).
Corresponding Authors:  Xuechen Jiao     E-mail:  xjiao@ustc.edu.cn

Cite this article: 

Fei Xie(谢飞), Mei Xie(解梅), Baoyu Song(宋宝玉), Qiaoyu Guo(郭桥雨), and Xuechen Jiao(焦学琛) ScatterX: A software for fast processing of high-throughput small-angle scattering data 2024 Chin. Phys. B 33 120101

[1] Cowieson N P, Edwards-Gayle C J C, Inoue K, Khunti N S, Doutch J, Williams E, Daniels S, Preece G, Krumpa N A, Sutter J P, Tully M D, Terrill N J and Rambo R P 2020 J. Synchrotron Radiat. 27 1438
[2] Peters G S, Zakharchenko O A, Konarev P V, Karmazikov Y V, Smirnov M A, Zabelin A V, Mukhamedzhanov E H, Veligzhanin A A, Blagov A E and Kovalchuk M V 2019 Nucl. Instrum. Meth. A 945 162616
[3] Takagi H, Igarashi N, Nagatani Y, Ohta H, Mori T, Kosuge T and Shimizu N 2019 AIP Conf. Proc. 2054 060038
[4] Zhang Y P, Mo C J, Zhang P and Kang W 2023 Chin. Phys. Lett. 41 017801
[5] Lyngso J and Pedersen J S 2021 J. Appl. Crystallogr. 54 295
[6] Ushakov A, Velthuis H, Koster N and Janssen J 2021 IEEE Trans. Plasma Sci. 49 770
[7] Heller W T, Cuneo M, Debeer-Schmitt L, Do C, He L L, Heroux L, Littrell K, Pingali S V, Qian S, Stanley C, Urban V S, Wu B and Bras W 2018 J. Appl. Crystallogr. 51 242
[8] Ke Y, He C, Zheng H, Geng Y, Fu J, Zhang S, Hu H, Wang S, Zhou B, Wang F and Tao J 2018 Neutron News 29 14
[9] Wang T, Sun L, Chen L,Wang Y, Sun G and Liu D 2018 J. Instrument. 13 T10008
[10] Sokolova A, Whitten A E, de Campo L, Christoforidis J, Eltobaji A, Barnes J, Darmann F and Berry A 2019 J. Appl. Crystallogr. 52 1
[11] Wang Y X, Li Z H, Kong J, Chang L P, Li D F and Lv B L 2021 Phil. Mag. Lett. 101 320
[12] Hu J Y, Zhang J L, Tan X N, Cheng X Y, Su Z Z, Qian L X, Xu M Z, Sha Y F, Wang Y Y, Yang Y S, Liu Y P, Mo G, Xing X Q and Wu Z H 2023 Nano Res. 16 3703
[13] Xie F, Li Z H,Wang W J, Li D F, Li Z Z, Lv B L and Hou B 2020 Fuel 262 116547
[14] Mao Z N, Bi X W, Ye F, Shu X, Sun L, Guan J, Ritchie R O and Wu S J 2020 ACS Biomater. Sci. Eng. 6 4512
[15] Zhang B X, Zhang J L, Zhang F Y, Zheng L R, Mo G, Han B X and Yang G Y 2020 Adv. Funct. Mater. 30 1906194
[16] Meng X, Meng L, Gong Y, Li Z, Mo G and Zhang J 2021 RSC Adv. 11 37528
[17] Xiao P, Gong Y J, Li D F and Li Z H 2021 Microporous Mesoporous Mater. 323 111201
[18] Xiao P, Zhang S J, Gong Y J, Liu Y, Li Z H and Li D F 2023 Chem. Phys. Lett. 811 140239
[19] Wu T, Lu C, Sun T, Li Y, Yuan S, Li D, Wang G and Ren X 2022 Microporous Mesoporous Mater. 330 111584
[20] Spinozzi F, Ortore M G, Nava G, Bomboi F, Carducci F, Amenitsch H, Bellini T, Sciortino F and Mariani P 2020 Langmuir 36 10387
[21] Baker M A B, Tuckwell A J, Berengut J F, Bath J, Benn F, Duff A P, Whitten A E, Dunn K E, Hynson R M, Turberfield A J and Lee L K 2018 Acs Nano 12 5791
[22] Bernetti M, Hall K B and Bussi G 2021 Nucleic Acids Res. 49 e84
[23] Chen Y L, Lee T, Elber R and Pollack L 2019 Biophys. J. 116 19
[24] Hermann M R and Hub J S 2019 J. Chem. Theory Comput. 15 5103
[25] Ivanovic M T, Bruetzel L K, Shevchuk R, Lipfert J and Hub J S 2018 Phys. Chem. Chem. Phys. 20 26351
[26] Khaykelson D and Raviv U 2020 Biophys. Rev. 12 41
[27] Konishi T, Okamoto D, Tadokoro D, Kawahara Y, Fukao K and Miyamoto Y 2018 Phys. Rev. Mater. 2 105602
[28] Ballauff M 2001 Curr. Opin. Colloid Interface Sci. 6 132
[29] Xuan W, Zhu C, Liu Y and Cui Y 2012 Chem. Soc. Rev. 41 1677
[30] Du D Y, Qin J S, Li S L, Su Z M and Lan Y Q 2014 Chem. Soc. Rev. 43 4615
[31] Hirst A R, Smith D K, Feiters M C and Geurts H P M 2004 Chem. Eur. J. 10 5901
[32] Yu G C, Yan X Z, Han C Y and Huang F H 2013 Chem. Soc. Rev. 42 6697
[33] Radlinski A P, Mastalerz M, Hinde A L, Hainbuchner A, Rauch H, Baron M, Lin J S, Fan L and Thiyagarajan P 2004 Int. J. Coal Geol. 59 245
[34] Coppens M O 1999 Catal. Today 53 225
[35] Kikhney A G and Svergun D I 2015 Febs. Lett. 589 2570
[36] Meek N and Penumadu D 2021 Carbon 178 133
[37] Ryan A J, Bras W, Mant G R and Derbyshire G E 1994 Polymer 35 4537
[38] Michael S 2021 Zenodo 1.024 5825707
[39] Hopkins J B, Gillilan R E and Skou S 2017 J. Appl. Crystallogr. 50 1545
[40] Tan L X, Elkins J G, Davison B H, Kelley E G and Nickels J 2021 J. Appl. Crystallogr. 54 363
[41] Cookson D, Kirby N, Knott R, Lee M and Schultz D 2006 J. Synchrotron Rad. 13 440
[42] Hammersley A P 2016 J. Appl. Crystallogr. 49 646
[43] Ilavsky J 2012 J. Appl. Crystallogr. 45 324
[44] Boesecke P 2007 J. Appl. Crystallogr. 40 S423
[45] Kieffer J and Karkoulis D 2013 J. Phys. Conf. Ser. 425 202012
[46] Ilavsky J and Jemian P R 2009 J. Appl. Crystallogr. 42 347
[47] Konarev P V, Petoukhov M V, Volkov V V and Svergun D I 2006 J. Appl. Crystallogr.. 39 277
[48] Bressler I, Pauw B R and Thünemann A F 2015 J. Appl. Crystallogr. 48 962
[49] Bressler I, Kohlbrecher J and Thunemann A F 2015 J. Appl. Crystallogr. 48 1587
[50] Hossain E 2022 Introduction to MATLAB
[51] Tomsic M, Jamnik A, Fritz-Popovski G, Glatter O and Vlcek L 2007 J. Phys. Chem. B 111 1738
[52] Michot L J, Bihannic I, Maddi S, Baravian C, Levitz P and Davidson P 2008 Langmuir 24 3127
[53] Page K A, Landis F A, Phillips A K and Moore R B 2006 Macromolecules 39 3939
[54] Lemaire B J, Panine P, Gabriel J C P and Davidson P 2002 Europhys. Lett. 59 55
[55] Pauw B R 2013 J. Phys. Condensed Matter 25 383201
[56] Orthaber D, Bergmann A and Glatter O 2000 J. Appl. Crystallogr. 33 218
[57] Dreiss C A, Jack K S and Parker A P 2006 J. Appl. Crystallogr. 39 32
[58] Russell T P 1983 J. Appl. Crystallogr. 16 473
[59] Russell T P, Lin J S, Spooner S and Wignall G D 1988 J. Appl. Crystallogr. 21 629
[60] Hermans P H, Heikens D and Weidinger A 1959 J. Polym. Sci. 35 145
[61] Kratky O, Pilz I and Schmitz P J 1966 J. Colloid Interface Sci. 21 24
[62] Pilz I and Kratky O 1967 J. Colloid Interface Sci. 24 211
[63] Pilz I 1969 J. Colloid Interface Sci. 30 140
[64] Shaffer L B and Hendrick R W 1974 J. Appl. Crystallogr. 7 159
[65] Endres A, Lode U, vonKrosigk G, Bark M, Cunis S, Gehrke R and Wilke W 1997 Rev. Sci. Instrum. 68 4009
[66] Haubold H G, Vad T, Jungbluth H and Hiller P 2001 Electrochim. Acta 46 1559
[67] Xie F, Li Z H, Li Z Z, Li D F, Gao Y X andWang B 2018 Nucl. Instrum. Meth. A 900 64
[68] Affholter K A, Henderson S J, Wignall G D, Bunick G J, Haufler R E and Compton R N 1993 J. Chem. Phys. 99 9224
[69] Vollet D R, Donatti D A and Ruiz A I 2001 J. Non-Cryst. Solids 288 81
[70] Osamura K, Shibue K, Suzuki R and Murakami Y 1980 Sci. Rep. Res. Inst. Tohoku Univ. Ser. A 28 65
[71] Debye P and Bueche A M 1949 J. Appl. Phys. 20 518
[72] Goderis B, Reynaers H, Koch M H J and Mathot V B F 1999 J. Polym. Sci. Part B Polym. Phys. 37 1715
[73] Liu H G and Zwart P H 2012 J. Struct. Biol. 180 226
[74] Franke D and Svergun D I 2009 J. Appl. Crystallogr. 42 342
[75] Liu J, Pancera S, Boyko V, Shukla A, Narayanan T and Huber K 2010 Langmuir 26 17405
[76] Hammons J A, Ilavsky J and Zhang F 2015 Electrochemistry in Ionic Liquids pp. 169-213
[77] Gao P L, Gong J, Tian Q, Sun G A, Yan H Y, Chen L, Bai L F, Guo Z M and Ju X 2022 Chin. Phys. B 31 056102
[78] Berryman J G 1987 J. Math. Phys. 28 244
[1] Corrigendum to “High-throughput discovery of kagome materials in transition metal oxide monolayers”
Renhong Wang(王人宏), Cong Wang(王聪), Ruixuan Li(李睿宣), Deping Guo(郭的坪), Jiaqi Dai(戴佳琦), Canbo Zong(宗灿波), Weihan Zhang(张伟涵), and Wei Ji(季威). Chin. Phys. B, 2025, 34(9): 099902.
[2] Thermal transport properties of 2D narrow bandgap semiconductor Ca3N2, Ba3P2, and Ba3As2: Machine learning potential study
Wenlong Li(李文龙), Yu Liu(刘余), Zhendong Li(李振东), Pei Zhang(张培), Xinghua Li(李兴华), and Tao Ouyang(欧阳滔). Chin. Phys. B, 2025, 34(9): 096302.
[3] Semiclassical Coulomb-scattering model for strong-field tunneling ionization
Qing Zhao(赵晴), Yigen Peng(彭易根), Jiayin Che(车佳殷), Chao Chen(陈超), Shang Wang(王赏), Guoguo Xin(辛国国), and Yanjun Chen(陈彦军). Chin. Phys. B, 2025, 34(9): 093201.
[4] Temperature and acoustic impedance simultaneous sensor based on forward stimulated Brillouin scattering in highly nonlinear fiber
Shilong Liu(刘仕龙), Yang Li(李阳), Hongbin Hu(胡洪彬), Bing Sun(孙兵), and Zuxing Zhang(张祖兴). Chin. Phys. B, 2025, 34(7): 074212.
[5] Magnon behavior in YIG film under microwave excitation investigated by Brillouin light scattering
Guofu Xu(徐国服), Kang An(安康), Wenjun Ma(马文俊), Xiling Li(李喜玲), C. K. Ong, Chi Zhang(张驰), and Guozhi Chai(柴国志). Chin. Phys. B, 2025, 34(6): 067507.
[6] Single-scattering characteristics of melting ice crystal particles in the millimeter-wave band
Xue-Hai Zhang(张学海), Wen-Bo Liu(刘文博), Xin-Hui Zhang(张欣慧), He-Li Wei(魏合理), Wei-Dong Li(李卫东), Jin-Long Duan(段金龙), Shu-Guang Zou(邹曙光), Jia Liu(刘佳), and Cong-Ming Dai(戴聪明). Chin. Phys. B, 2025, 34(5): 050307.
[7] High-throughput discovery of kagome materials in transition metal oxide monolayers
Renhong Wang(王人宏), Cong Wang(王聪), Ruixuan Li(李睿宣), Deping Guo(郭的坪), Jiaqi Dai(戴佳琦), Canbo Zong(宗灿波), Weihan Zhang(张伟涵), and Wei Ji(季威). Chin. Phys. B, 2025, 34(4): 046801.
[8] Algorithm for computing time correlation functions in non-stationary complex dynamic systems
Jiu Zhang(张鹫), Lifu Jin(金立孚), Bo Zheng(郑波), Xiongfei Jiang(蒋雄飞), Tingting Chen(陈婷婷), Cong Xu(徐匆), and Yanqing Hu(胡延庆). Chin. Phys. B, 2025, 34(3): 038904.
[9] High-throughput screening and evaluation of double-linker metal-organic frameworks for CO2/H2 adsorption and separation
Ji-Long Huang(黄纪龙), Xiu-Ying Liu(刘秀英), Hao Chen(陈浩), Xiao-Dong Li(李晓东), and Jing-Xin Yu(于景新). Chin. Phys. B, 2025, 34(2): 027302.
[10] Evolution from the Kondo phase to the RKKY phase in the small impurity spacing regime of the two-impurity Anderson model
Hou-Min Du(杜厚旻) and Yu-Liang Liu(刘玉良). Chin. Phys. B, 2025, 34(2): 027102.
[11] Coupling between phonon and short-range spin correlations in frustrated spinel LiFeCr4O8
Xiang Li(李想), Wei Ren(任玮), Bo Zhang(张博), Yan-Zhen Cai(蔡焱桢), Zhi-Wei Li(李志伟), Jianting Ji(籍建葶), Feng Jin(金峰), Anmin Zhang(张安民), and Qingming Zhang(张清明). Chin. Phys. B, 2025, 34(11): 117801.
[12] Experiment study of energy redistribution during collisions of the excited state H2(1, 7) with LiH
Kai Wang(王凯), Zhong Liu(刘中), Shuying Wang(王淑英), Chu Qin(秦楚), Zilei Yu(於子雷), and Xiaofang Zhao(赵小芳). Chin. Phys. B, 2025, 34(11): 113401.
[13] Intensity enhancement of Raman active and forbidden modes induced by naturally occurred hot spot at GaAs edge
Tao Liu(刘涛), Miao-Ling Lin(林妙玲), Da Meng(孟达), Xin Cong(从鑫), Qiang Kan(阚强), Jiang-Bin Wu(吴江滨), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2025, 34(1): 017801.
[14] Enhanced mechanical squeezing in an optomechanical system via backward stimulated Brillouin scattering
Shan-Shan Chen(陈珊珊), Yi-Long Xie(谢亦龙), Jing-Jing Zhang(张京京), Na-Na Zhang(张娜娜), Yong-Rui Guo(郭永瑞), Huan Yang(杨桓), and Yong Ma(马勇). Chin. Phys. B, 2025, 34(1): 014201.
[15] Four-wave mixing Bragg scattering for small frequency shift from silicon coupled microrings
Chang Zhao(赵畅), Chao Wu(吴超), Pingyu Zhu(朱枰谕), Yuxing Du(杜昱星), Yan Wang(王焱), Miaomiao Yu(余苗苗), Kaikai Zhang(张凯凯), and Ping Xu(徐平). Chin. Phys. B, 2025, 34(1): 014206.
No Suggested Reading articles found!