Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 113401    DOI: 10.1088/1674-1056/add502
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Experiment study of energy redistribution during collisions of the excited state H2(1, 7) with LiH

Kai Wang(王凯)1,2,†, Zhong Liu(刘中)1,2,†, Shuying Wang(王淑英)1,2,‡, Chu Qin(秦楚)1,2, Zilei Yu(於子雷)1,2, and Xiaofang Zhao(赵小芳)1,2,3
1 Xinjiang Key Laboratory of Solid State Physics and Devices, Xinjiang University, Urumqi 830017, China;
2 School of Physical Science and Technology, Xinjiang University, Urumqi 830017, China;
3 Tarim University, Alar 843300, Chin
Abstract  The H$_{2}$ was excited to the H$_{2}$ X$^{1}\Sigma ^+_{\rm g}$ ($v=1$, $J=7$) energy level by the stimulated Raman pumping (SRP) technique, and the process of energy redistribution between H$_{2}(1,7)$ molecule and LiH was studied. The particle population density of H$_{2}(1,7)$ energy level is obtained by the coherent anti-Stokes Raman scattering (CARS) technique. The particle population density of each rotational level of H$_{2}$ ($v=1$, $J=7$, 5, 3) is analyzed with temperature after the collision between H$_{2}(1,7)$ molecule and LiH. It is found that the particle population density of each level increases with the increase in temperature after the collision. The time-resolved CARS spectra of each rotational energy level of H$_{2}$ ($v=1$, $J=7$, 5, 3) are analyzed at different temperatures. It is found that a multi-quantum relaxation process with $\Delta J=4$ occurs in H$_{2}(1,7)$ molecule, and the temperature accelerates the relaxation process. The effective lifetime of H$_{2}(1,7)$ energy level is obtained by plotting the semi-logarithmic plots of the CARS signal intensity and delay time of the level, and observing the law of the effective lifetime change with the temperature. It is found that the effective lifetime of H$_{2}(1,7)$ energy level shows an obvious decreasing trend with the increase of temperature.
Keywords:  coherent anti-Stokes Raman scattering      particle population density      multiple quantum relaxation      effective lifetime  
Received:  09 March 2025      Revised:  30 April 2025      Accepted manuscript online:  07 May 2025
PACS:  34.50.-s (Scattering of atoms and molecules)  
  34.20.-b (Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions)  
  34.30.-e  
  34.60.+z  
Fund: Project supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region (Grant No. 2023D01C06) and the National Natural Science Foundation of China (Grant No. 12164047).
Corresponding Authors:  Shuying Wang     E-mail:  wsysmilerr@sina.com
About author:  2025-113401-250382.pdf

Cite this article: 

Kai Wang(王凯), Zhong Liu(刘中), Shuying Wang(王淑英), Chu Qin(秦楚), Zilei Yu(於子雷), and Xiaofang Zhao(赵小芳) Experiment study of energy redistribution during collisions of the excited state H2(1, 7) with LiH 2025 Chin. Phys. B 34 113401

[1] Hong Q Z, Sun Q H, Pirani F, Valentín Rodríguez M A, Hernández Lamoneda R, Coletti C, Hernández M I and Bartolomei M 2021 J. Chem. Phys. 154 064304
[2] Hong Q Z, Bartolomei M, Coletti C, Lombardi A, Sun Q H and Pirani F 2021 Molecules 26 7152
[3] Sun Z F, van Hemert M C, Loreau J, van der Avoird A, Suits A G and Parker D H 2020 Science 369 307
[4] Towski M, Loreau J and Lique F 2022 Phys. Chem. Chem. Phys. 24 11910
[5] Tang G Q, Besemer M, de Jongh T, Shuai Q, van der Avoird A, Groenenboom G C and van de Meerakker S Y T 2020 J. Chem. Phys. 153 064301
[6] Wünderlich D, Scarlett L H, Briefi S, Fantz U, Zammit M C, Fursa D V and Bray I 2021 J. Phys. D: Appl. Phys. 54 115201
[7] Wan Y, Yang B H, Stancil P C, Balakrishnan N, Parekh N J and Forrey R C 2018 Astrophys. J. 862 132
[8] Schiffman A and Chandler D W 1995 Int. Rev. Phys. Chem. 14 371
[9] Ogurtsov G N, Il’In R N, Lavrov V M and Avakyan S V 2000 Phys. Chem. Earth (C) 25 587
[10] Lee R A, Ajello J M, Malone C P, Evans J S, Veibell V, Holsclaw G M, McClintock W E, Hoskins A C, Jain S K and Gérard J C 2022 Astrophys. J. 938 99
[11] Li L, Leys C, Britun N, Snyders R and Nikiforov A Y 2014 IEEE Trans. Plasma Sci. 42 2752
[12] Deng X L, Nikiforov A Y, Ionita E R, Dinescu G and Leys C 2015 Appl. Phys. Lett. 107 053702
[13] Lytras I, Mitsopoulos E P, Dogkas E and Koutmos P 2020 Combust. Explos. Shock Waves 56 278
[14] López-Cámara C F, Saggese C, Pitz W J, Shao X, Im H J and Dunn- Rankin D 2023 Combust. Flame 253 112822
[15] Mandal B, Joy C, Semenov A and Babikov D 2022 ACS Earth Space Chem. 6 521
[16] MTielens A G G 2005 The physics and chemistry of the interstellar medium (London: Cambridge University Press) p. 96
[17] Havey D K, Du J, Liu Q N and Mullin A S 2010 J. Phys. Chem. A 114 1569
[18] Du J, Sassin N A, Havey D K, Hsu K and Mullin A S 2013 J. Phys. Chem. A 117 12104
[19] Hartland G V, Qin D and Dai H L 1994 J. Chem. Phys. 101 8554
[20] Jongma R T and Wodtke A M 1999 J. Chem. Phys. 111 10957
[21] Yamasaki K, Fujii H, Watanabe S, Hatano T and Tokue I 2006 Phys. Chem. Chem. Phys. 8 1936
[22] McCaffery A J, Pritchard M, Turner J F C and Marsh R J 2011 J. Phys. Chem. A 115 4169
[23] McCaffery A J 2016 J. Chem. Phys. 144 194304
[24] Yang H W, Liu X Y, Liu Y Q, Xu M H and Li Z 2023 J. Chem. Phys. 159 124306
[25] Michael T J, Ogden H M and Mullin A S 2021 J. Chem. Phys. 154 134307
[26] Hoshino S, Yamamoto O and Tsukiyama K 2022 ACS Omega 7 3605
[27] Zhang H H, Yu W D, Gao C Z and Qu Y Z 2023 Chin. Phys. Lett. 40 043101
[28] Chen G Q, Liu J, Alghazi A and Wang Q 2021 Russ. J. Phys. Chem. B 15 764
[29] Koide N, Haze M, Okuda Y, Yamasaki K and Kohguchi H 2023 Chem. Phys. Lett. 833 140932
[30] Fu Y L and Han Y C 2021 Chem. Phys. Lett. 776 138676
[31] Wang S Y, Zhang B, Zhu D H, Dai K and Shen Y F 2012 Spectrochim Acta A 96 517
[32] Shen X Y, Wang S Y, Dai K and Shen Y F 2017 Spectrochim Acta A 173 516
[33] Kabir H, Antonov I O and Heaven M C 2009 J. Chem. Phys. 130 074305
[34] Liu J, Shen X Y and Dai K 2013 Chem. Phys. 425 62
[35] Alghazi A, Liu J, Dai K and Shen Y F 2015 Chem. Phys. 448 76
[36] Pachucki K and Komasa J 2009 J. Chem. Phys. 130 164113
[37] Chen J J, Hung Y M, Liu D K, Fung H S and Lin K C 2001 J. Chem. Phys. 114 9395
[1] Scanning the energy dissipation process of energetic materials based on excited state relaxation and vibration-vibration coupling
Wen-Yan Wang(王文岩), Ning Sui(隋宁), Li-Quan Zhang(张里荃), Ying-Hui Wang(王英惠), Lin Wang(王琳), Quan Wang(王权), Jiao Wang(王娇), Zhi-Hui Kang(康智慧), Yan-Qiang Yang(杨延强), Qiang Zhou(周强), Han-Zhuang Zhang(张汉壮). Chin. Phys. B, 2018, 27(10): 104205.
[2] Analysis of detection limit to time-resolved coherent anti-Stokes Raman scattering nanoscopy
Liu Wei (刘伟), Liu Shuang-Long (刘双龙), Chen Dan-Ni (陈丹妮), Niu Han-Ben (牛憨笨). Chin. Phys. B, 2014, 23(10): 104202.
[3] Combined frequency- and time-domain photocarrier radiometry characterization of ion-implanted and thermally annealed silicon wafers
Ren Sheng-Dong (任胜东), Li Bin-Cheng (李斌成), Gao Li-Feng (高丽峰), Wang Qian (王谦). Chin. Phys. B, 2013, 22(5): 057202.
[4] Coherent coupling between vibrational modes of C–H bonds at different positions studied by femtosecond time-resolved coherent anti-Stokes Raman scattering
Du Xin(杜鑫), He Xing(何兴), Liu Yu-Qiang(刘玉强), Wang Ying-Hui(王英惠), and Yang Yan-Qiang(杨延强) . Chin. Phys. B, 2012, 21(3): 034210.
[5] Selective excitation of molecular mode in a mixture by femtosecond resonance-enhanced coherent anti-Stokes Raman scattering spectroscopy
He Ping(贺平), Li Si-Ning(李思宁), Fan Rong-Wei(樊荣伟), Li Xiao-Hui(李晓晖), Xia Yuan-Qin(夏元钦), Yu Xin(于欣), and Chen De-Ying(陈德应) . Chin. Phys. B, 2012, 21(2): 027801.
[6] Theoretical and experimental investigations of coherent phonon dynamics in sapphire crystal using femto- second time-resolved coherent anti-Stokes Raman scattering
Du Xin(杜鑫), Zhang Ming-Fu(张明福), He Xing(何兴), Meng Qing-Kun(孟庆琨), Song Yun-Fei(宋云飞), Yang Yan-Qiang(杨延强), and Han Jie-Cai(韩杰才) . Chin. Phys. B, 2011, 20(12): 126301.
[7] Simultaneous measurements of global vibrational spectra and dephasing times of molecular vibrational modes by broadband time-resolved coherent anti-Stokes Raman scattering spectrography
Yin Jun(尹君), Yu Ling-Yao(于凌尧), Liu Xing(刘星), Wan Hui(万辉), Lin Zi-Yang(林子扬), and Niu Han-Ben(牛憨笨). Chin. Phys. B, 2011, 20(1): 014206.
[8] Selective excitation and suppression of coherent anti-Stokes Raman scattering by shaping femtosecond pulses
Zhang Shi-An(张诗按), Zhang Hui(张晖), Wang Zu-Geng(王祖赓), and Sun Zhen-Rong(孙真荣). Chin. Phys. B, 2010, 19(4): 043201.
[9] Imaging properties of coherent anti-Stokes Raman scattering microscope
Yuan Jing-He (袁景和), Xiao Fan-Rong (肖繁荣), Wang Gui-Ying (王桂英), Xu Zhi-Zhan (徐至展). Chin. Phys. B, 2005, 14(5): 935-941.
No Suggested Reading articles found!