|
Special Issue:
SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems
|
| SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems |
Prev
Next
|
|
|
Semiclassical Coulomb-scattering model for strong-field tunneling ionization |
| Qing Zhao(赵晴)1,2,†, Yigen Peng(彭易根)2,†, Jiayin Che(车佳殷)2,3, Chao Chen(陈超)2,4, Shang Wang(王赏)1,‡, Guoguo Xin(辛国国)5,§, and Yanjun Chen(陈彦军)2,¶ |
1 College of Physics and Hebei Key Laboratory of Photophysics Research and Application, Hebei Normal University, Shijiazhuang 050010, China; 2 College of Physics and Information Technology and Quantum Materials and Devices Key Laboratory of Shaanxi Province's High Education Institution, Shaan'xi Normal University, Xi'an 710119, China; 3 School of Physics, Henan Normal University, Xinxiang 453007, China; 4 College of Physics and Electronic Engineering, Xingtai University, Xingtai 054001, China; 5 School of Physics, Northwest University, Xi'an 710127, China |
|
|
|
|
Abstract This study analytically examines the ionization of atoms in strong near-circular laser fields. The classic Keldysh-Rutherford (KR) Coulomb-scattering (CS) model [Phys. Rev. Lett. 121 123201 (2018)] successfully explained the attoclock experimental curve for the H atom at lower laser intensities. Here, we develop a semiclassical model that includes the initial conditions related to the quantum properties of tunneling in the KR model at the beginning of the scattering process. This model is able to explain recent attoclock experimental curves over a wider range of laser and atomic parameters. Our results show the importance of system symmetry and quantum effects in attoclock measurements, suggesting the complex role of the Coulomb potential in strong-field ionization.
|
Received: 02 April 2025
Revised: 20 May 2025
Accepted manuscript online: 04 June 2025
|
|
PACS:
|
32.80.-t
|
(Photoionization and excitation)
|
| |
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
| |
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174239, 12347165, and 12404330), Shaanxi Fundamental Science Research Project for Mathematics and Physics (Grant No. 23JSY022), Natural Science Basic Research Program of Shaanxi (Grant No. 2022JM-015), Hebei Natural Science Foundation (Grant No. A2022205002), and Science and Technology Project of Hebei Education Department (Grant No. QN2022143). |
Corresponding Authors:
Shang Wang, Guoguo Xin, Yanjun Chen
E-mail: phywangshang@163.com;xinguo@nwu.edu.cn;chenyjhb@gmail.com
|
Cite this article:
Qing Zhao(赵晴), Yigen Peng(彭易根), Jiayin Che(车佳殷), Chao Chen(陈超), Shang Wang(王赏), Guoguo Xin(辛国国), and Yanjun Chen(陈彦军) Semiclassical Coulomb-scattering model for strong-field tunneling ionization 2025 Chin. Phys. B 34 093201
|
[1] Becker W, Grasbon F, Kopold R, Milošević D B, Paulus G G and Walther H 2002 Adv. At. Mol. Opt. Phys. 48 35 [2] Lewenstein M, Kulander K C, Schafer K J and Bucksbaum P H 1995 Phys. Rev. A 51 1495 [3] Eckle P, Smolarski M, Schlup P, Biegert J, Staudte A, Schöffler M, Muller H G, Dörner R and Keller U2008 Nat. Phys. 4 565 [4] Eckle P, Pfeiffer A N, Cirelli C, Staudte A, Dörner R, Muller H G, Büttiker M and Keller U 2008 Science 322 1525 [5] Pfeiffer A N, Cirelli C, Smolarski M, Dimitrovski D, Abu-samha M, Madsen L B and Keller U 2012 Nat. Phys. 8 76 [6] Pfeiffer A N, Cirelli C, Smolarski M and Keller U 2013 Chem. Phys. 414 84 [7] Shvetsov-Shilovski N I, Lein M, Madsen L B, Räsänen E, Lemell C, Burgdörfer J, Arbó D G and Tökési K 2016 Phys. Rev. A 94 013415 [8] Trabert D, Anders N, Brennecke S, Schöffler M S, Jahnke T, Schmidt L Ph H, Kunitski M, Lein M, Dörner R and Eckart S 2021 Phys. Rev. Lett. 127 273201 [9] Douguet N and Bartschat K 2022 Phys. Rev. A 106 053112 [10] Dou Y K, Fang Y Q, Ge P P and Liu Y Q 2023 Chin. Phys. Lett. 40 033201 [11] Cao D D, Pan X F, Zhang J and Liu X S 2023 Chin. Phys. B 32 034204 [12] Landsman A S, Weger M, Maurer J, Boge R, Ludwig A, Heuser S, Cirelli C, Gallmann L and Keller U 2014 Optica 1 343 [13] Camus N, Yakaboylu E, Fechner L, Klaiber M, Laux M, Mi Y H, Hatsagortsyan K Z, Pfeifer T, Keitel C H and Moshammer R 2017 Phys. Rev. Lett. 119 023201 [14] Teeny N, Yakaboylu E, Bauke H and Keitel C H 2016 Phys. Rev. Lett. 116 063003 [15] Sainadh U S, Xu H,Wang X, Atia-Tul-Noor A,WallaceWC, Douguet N, Bray A, Ivanov I, Bartschat K, Kheifets A, Sang R T and Litvinyuk I V 2019 Nature 568 75 [16] Quan W, Serov V V, Wei M Z, Zhao M, Zhou Y, Wang Y L, Lai X Y, Kheifets A S and Liu X J 2019 Phys. Rev. Lett. 123 223204 [17] Klaiber M, Hatsagortsyan K Z and Keitel C H 2015 Phys. Rev. Lett. 114 083001 [18] Torlina L, Morales F, Kaushal J, Ivanov I, Kheifets A, Zielinski A, Scrinzi A, Muller H G, Sukiasyan S, Ivanov M and Smirnova O 2015 Nat. Phys. 11 503 [19] Ma Y Z, Ni H C and Wu J 2024 Chin. Phys. B 33 013201 [20] Brabec T, Ivanov M Yu and Corkum P B 1996 Phys. Rev. A 54 R2551 [21] Goreslavski S P, Paulus G G, Popruzhenko S V and Shvetsov-Shilovski N I 2004 Phys. Rev. Lett. 93 233002 [22] Yan T M, Popruzhenko S V, Vrakking M J J and Bauer D 2010 Phys. Rev. Lett. 105 253002 [23] Bray AW, Eckart S and Kheifets A S 2018 Phys. Rev. Lett. 121 123201 [24] Serov V V and Kheifets A S 2022 Phys. Rev. A 105 063106 [25] Chen C, Che J Y, Li W Y, Wang S, Xie X J, Huang J Y, Peng Y G, Xin G G and Chen Y J 2021 arXiv:2111.08491 [26] Che J Y, Huang J Y, Zhang F B, Chen C, Xin G G and Chen Y J 2023 Phys. Rev. A 107 043109 [27] Che J Y, Chen C, Li W Y, Li W and Chen Y J 2023 Acta Phys. Sin. 72 193301 (in Chinese) [28] Chen Z Y, Shen S Q, Li Y P, Yang Z Q, Che J Y and Chen Y J 2025 to appear in Phys. Rev. A [29] Xie X J, Chen C, Xin G G, Liu J and Chen Y J 2020 Opt. Express 28 33228 [30] Che J Y, Chen C, Wang S, Xin G G and Chen Y J 2023 New J. Phys. 25 013016 [31] Keldysh L V 1965 Sov. Phys. JETP 20 1307 [32] Faisal F H M 1973 J. Phys. B: At. Mol. Phys. 6 L89 [33] Reiss H R 1980 Phys. Rev. A 22 1786 [34] Landau L and Lifshitz E 1982 Mechanics, in Theorecial Physics Vol. 1 (Oxford: Elsevier) [35] Boge R, Cirelli C, Landsman A S, Heuser S, Ludwig A, Maurer J, Weger M, Gallmann L and Keller U 2013 Phys. Rev. Lett. 111 103003 [36] Landsman A S, Hofmann C, Pfeiffer A N, Cirelli C and Keller U 2013 Phys. Rev. Lett. 111 263001 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|