| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Coupling between phonon and short-range spin correlations in frustrated spinel LiFeCr4O8 |
| Xiang Li(李想)1,†, Wei Ren(任玮)1,†, Bo Zhang(张博)1, Yan-Zhen Cai(蔡焱桢)1, Zhi-Wei Li(李志伟)1, Jianting Ji(籍建葶)2, Feng Jin(金峰)2, Anmin Zhang(张安民)1,‡, and Qingming Zhang(张清明)2,1 |
1 School of Physical Science and Technology, Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou University, Lanzhou 730000, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
|
|
Abstract Spin—phonon coupling is important in chromate spinel oxides $A$Cr$_2$O$_4$, but its role in LiFeCr$_4$O$_8$ is not well understood. In this paper, we employ Raman scattering and first-principles phonon calculations to study this material. Ten out of 13 Raman-active modes are well assigned. Notably, no phonon splitting is observed across the structural phase transition due to the remarkably small Grüneisen constants. This observation, in conjunction with the structural data, provides compelling evidence that the structural phase transition in LiFeCr$_4$O$_8$ is primarily driven by the spin-driven Jahn—Teller effect. Interestingly, some Raman modes (at 207~cm$^{-1}$, 306~cm$^{-1}$ and 462~cm$^{-1}$) exhibit unusual linewidth behavior across the temperature range investigated. Furthermore, the Raman spectra in different phases show no magnetic field dependence. These results suggest that phonons couple with short-range spin correlations, offering insights into how spin and lattice degrees of freedom interact in frustrated systems.
|
Received: 15 April 2025
Revised: 04 June 2025
Accepted manuscript online: 16 June 2025
|
|
PACS:
|
78.30.-j
|
(Infrared and Raman spectra)
|
| |
63.20.-e
|
(Phonons in crystal lattices)
|
| |
63.20.dd
|
(Measurements)
|
| |
74.25.Kc
|
(Phonons)
|
|
| Fund: This work was supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1402704 and 2022YFA1408302), the National Natural Science Foundation of China (Grant No. 12274186), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33010100), and the Synergetic Extreme Condition User Facility (SECUF). The authors are grateful for the support provided by the Supercomputing Center of Lanzhou University. |
Corresponding Authors:
Anmin Zhang
E-mail: amzhang@lzu.edu.cn
|
Cite this article:
Xiang Li(李想), Wei Ren(任玮), Bo Zhang(张博), Yan-Zhen Cai(蔡焱桢), Zhi-Wei Li(李志伟), Jianting Ji(籍建葶), Feng Jin(金峰), Anmin Zhang(张安民), and Qingming Zhang(张清明) Coupling between phonon and short-range spin correlations in frustrated spinel LiFeCr4O8 2025 Chin. Phys. B 34 117801
|
[1] Nilsen G J, Okamoto Y, Masuda T, Rodriguez-Carvajal J, Mutka H, Hansen T and Hiroi Z 2015 Phys. Rev. B 91 174435 [2] Ramirez A 1994 Annual Review of Materials Science 24 453 [3] Reimers J N 1992 Phys. Rev. B 45 7287 [4] Moessner R and Ramirez A P 2006 Physics Today 59 24 [5] Moessner R and Chalker J T 1998 Phys. Rev. B 58 12049 [6] Kant C, Deisenhofer J, Tsurkan V and Loidl 2010 J. Phys.: Conf. Ser. 200 032032 [7] Yamashita Y and Ueda K 2000 Phys. Rev. Lett. 85 4960 [8] Tchernyshyov O, Moessner R and Sondhi S L 2002 Phys. Rev. Lett. 88 067203 [9] Lee S H, Broholm C, Kim T H, RatcliffWand Cheong SW2000 Phys. Rev. Lett. 84 3718 [10] Sushkov A B, Tchernyshyov O, II W R, Cheong S W and Drew H D 2005 Phys. Rev. Lett. 94 137202 [11] Chung J H, Matsuda M, Lee S H, Kakurai K, Ueda H, Sato T J, Takagi H, Hong K P and Park S 2005 Phys. Rev. Lett. 95 247204 [12] Bordács S, Varjas D, Kézsmárki I, Mihály G, Baldassarre L, Abouelsayed A, Kuntscher C A, Ohgushi K and Tokura Y 2005 Phys. Rev. Lett. 103 077205 [13] Kocsis V, Bordács S, Varjas D, Penc K, Abouelsayed A, Kuntscher C A, Ohgushi K, Tokura Y and Kézsmárki I 2013 Phys. Rev. B 87 064416 [14] Okamoto Y, Nilsen G J, Attfield J P and Hiroi Z 2013 Phys. Rev. Lett. 110 097203 [15] Lee S, Do S H, LeeWJ, Choi Y S, Lee M, Choi E S, Reyes A P, Kuhns P L, Ozarowski A and Choi K Y 2016 Phys. Rev. B 93 174402 [16] Saha R, Dhanya R, Bellin C, Béneut K, Bhattacharyya A, Shukla A, Narayana C, Suard E, Rodríguez-Carvajal J and Sundaresan A 2017 Phys. Rev. B 96 214439 [17] kamoto Y, Kanematsu T, Kubota Y, Yajima T and Takenaka K 2022 J. Phys. Soc. Jpn. 91 023710 [18] Zhang B, Ren W, Yang S, Kuang Q, Li D, Liu X, Zhang A, Pang H, Tang L, Qiao L, Li F and Li Z 2023 Phys. Rev. B 108 214401 [19] Aoyama K and Kawamura H 2019 Phys. Rev. B 99 144406 [20] The programs of the FullProf suite can be found at https://www.ill.eu/sites/fullprof/. [21] Blöchl P E 1994 Phys. Rev. B 50 17953 [22] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [23] Kresse G and Furthmüller J 1996 Computational Materials Science 6 15 [24] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [25] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [26] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505[27] Giannozzi P, de Gironcoli S, Pavone P and Baroni S 1991 Phys. Rev. B 43 7231 [28] Gonze X and Lee C 1997 Phys. Rev. B 55 10355 [29] Kobliska R J and Solin S A 1991 Phys. Rev. B 8 756 [30] Gomes A S O, Yaghini N, Martinelli A and Ahlberg E 2017 Journal of Raman Spectroscopy 48 1256 [31] Pokharel G, May A F, Parker D S, Calder S, Ehlers G, Huq A, Kimber S A J, Arachchige H S, Poudel L, McGuire M A, Mandrus D and Christianson A D 2018 Phys. Rev. B 97 134117 [32] Tarte P and Preudhomme J 1973 Spectrochimica Acta Part A: Molecular Spectroscopy 29 1301 [33] Granado E, García A, Sanjurjo J A, Rettori C, Torriani I, Prado F, Sánchez R D, Caneiro A and Oseroff S B 1999 Phys. Rev. B 60 11879 [34] Wang Z, Schiferl D, Zhao Y and O’Neill H S C 2003 Journal of Physics and Chemistry of Solids 64 2517 [35] Wang Z, Downs R T, Pischedda V, Shetty R, Saxena S K, Zha C S, Zhao Y S, Schiferl D and Waskowska A 2003 Phys. Rev. B 68 094101 [36] Rahman S, Samanta S, Errandonea D, Yan S, Yang K, Lu J and Wang L 2017 Phys. Rev. B 95 024107 [37] Fei Y and Ahrens T 1995 Mineral physics and crystallography: a handbook of physical constants (American Geophysical Union) 2 pp. 29–44 [38] Balkanski M, Wallis R F and Haro E 1983 Phys. Rev. B 28 1928 [39] Gasanly N, Aydnl A, O zkan H and Kocabas C 2002Materials Research Bulletin 37 169 [40] Pulvirenti P and Jiles D 1996 IEEE Transactions on Magnetics 32 4785 [41] Wakamura K 1989 Solid State Commun. 71 1033 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|