Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 117801    DOI: 10.1088/1674-1056/ade4b4
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Coupling between phonon and short-range spin correlations in frustrated spinel LiFeCr4O8

Xiang Li(李想)1,†, Wei Ren(任玮)1,†, Bo Zhang(张博)1, Yan-Zhen Cai(蔡焱桢)1, Zhi-Wei Li(李志伟)1, Jianting Ji(籍建葶)2, Feng Jin(金峰)2, Anmin Zhang(张安民)1,‡, and Qingming Zhang(张清明)2,1
1 School of Physical Science and Technology, Key Laboratory of Quantum Theory and Applications of MoE, Lanzhou University, Lanzhou 730000, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Spin—phonon coupling is important in chromate spinel oxides $A$Cr$_2$O$_4$, but its role in LiFeCr$_4$O$_8$ is not well understood. In this paper, we employ Raman scattering and first-principles phonon calculations to study this material. Ten out of 13 Raman-active modes are well assigned. Notably, no phonon splitting is observed across the structural phase transition due to the remarkably small Grüneisen constants. This observation, in conjunction with the structural data, provides compelling evidence that the structural phase transition in LiFeCr$_4$O$_8$ is primarily driven by the spin-driven Jahn—Teller effect. Interestingly, some Raman modes (at 207~cm$^{-1}$, 306~cm$^{-1}$ and 462~cm$^{-1}$) exhibit unusual linewidth behavior across the temperature range investigated. Furthermore, the Raman spectra in different phases show no magnetic field dependence. These results suggest that phonons couple with short-range spin correlations, offering insights into how spin and lattice degrees of freedom interact in frustrated systems.
Keywords:  Raman scattering      phonons      first-principles phonon calculations      magnetic materials  
Received:  15 April 2025      Revised:  04 June 2025      Accepted manuscript online:  16 June 2025
PACS:  78.30.-j (Infrared and Raman spectra)  
  63.20.-e (Phonons in crystal lattices)  
  63.20.dd (Measurements)  
  74.25.Kc (Phonons)  
Fund: This work was supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1402704 and 2022YFA1408302), the National Natural Science Foundation of China (Grant No. 12274186), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33010100), and the Synergetic Extreme Condition User Facility (SECUF). The authors are grateful for the support provided by the Supercomputing Center of Lanzhou University.
Corresponding Authors:  Anmin Zhang     E-mail:  amzhang@lzu.edu.cn

Cite this article: 

Xiang Li(李想), Wei Ren(任玮), Bo Zhang(张博), Yan-Zhen Cai(蔡焱桢), Zhi-Wei Li(李志伟), Jianting Ji(籍建葶), Feng Jin(金峰), Anmin Zhang(张安民), and Qingming Zhang(张清明) Coupling between phonon and short-range spin correlations in frustrated spinel LiFeCr4O8 2025 Chin. Phys. B 34 117801

[1] Nilsen G J, Okamoto Y, Masuda T, Rodriguez-Carvajal J, Mutka H, Hansen T and Hiroi Z 2015 Phys. Rev. B 91 174435
[2] Ramirez A 1994 Annual Review of Materials Science 24 453
[3] Reimers J N 1992 Phys. Rev. B 45 7287
[4] Moessner R and Ramirez A P 2006 Physics Today 59 24
[5] Moessner R and Chalker J T 1998 Phys. Rev. B 58 12049
[6] Kant C, Deisenhofer J, Tsurkan V and Loidl 2010 J. Phys.: Conf. Ser. 200 032032
[7] Yamashita Y and Ueda K 2000 Phys. Rev. Lett. 85 4960
[8] Tchernyshyov O, Moessner R and Sondhi S L 2002 Phys. Rev. Lett. 88 067203
[9] Lee S H, Broholm C, Kim T H, RatcliffWand Cheong SW2000 Phys. Rev. Lett. 84 3718
[10] Sushkov A B, Tchernyshyov O, II W R, Cheong S W and Drew H D 2005 Phys. Rev. Lett. 94 137202
[11] Chung J H, Matsuda M, Lee S H, Kakurai K, Ueda H, Sato T J, Takagi H, Hong K P and Park S 2005 Phys. Rev. Lett. 95 247204
[12] Bordács S, Varjas D, Kézsmárki I, Mihály G, Baldassarre L, Abouelsayed A, Kuntscher C A, Ohgushi K and Tokura Y 2005 Phys. Rev. Lett. 103 077205
[13] Kocsis V, Bordács S, Varjas D, Penc K, Abouelsayed A, Kuntscher C A, Ohgushi K, Tokura Y and Kézsmárki I 2013 Phys. Rev. B 87 064416
[14] Okamoto Y, Nilsen G J, Attfield J P and Hiroi Z 2013 Phys. Rev. Lett. 110 097203
[15] Lee S, Do S H, LeeWJ, Choi Y S, Lee M, Choi E S, Reyes A P, Kuhns P L, Ozarowski A and Choi K Y 2016 Phys. Rev. B 93 174402
[16] Saha R, Dhanya R, Bellin C, Béneut K, Bhattacharyya A, Shukla A, Narayana C, Suard E, Rodríguez-Carvajal J and Sundaresan A 2017 Phys. Rev. B 96 214439
[17] kamoto Y, Kanematsu T, Kubota Y, Yajima T and Takenaka K 2022 J. Phys. Soc. Jpn. 91 023710
[18] Zhang B, Ren W, Yang S, Kuang Q, Li D, Liu X, Zhang A, Pang H, Tang L, Qiao L, Li F and Li Z 2023 Phys. Rev. B 108 214401
[19] Aoyama K and Kawamura H 2019 Phys. Rev. B 99 144406
[20] The programs of the FullProf suite can be found at https://www.ill.eu/sites/fullprof/.
[21] Blöchl P E 1994 Phys. Rev. B 50 17953
[22] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[23] Kresse G and Furthmüller J 1996 Computational Materials Science 6 15
[24] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[25] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505[27] Giannozzi P, de Gironcoli S, Pavone P and Baroni S 1991 Phys. Rev. B 43 7231
[28] Gonze X and Lee C 1997 Phys. Rev. B 55 10355
[29] Kobliska R J and Solin S A 1991 Phys. Rev. B 8 756
[30] Gomes A S O, Yaghini N, Martinelli A and Ahlberg E 2017 Journal of Raman Spectroscopy 48 1256
[31] Pokharel G, May A F, Parker D S, Calder S, Ehlers G, Huq A, Kimber S A J, Arachchige H S, Poudel L, McGuire M A, Mandrus D and Christianson A D 2018 Phys. Rev. B 97 134117
[32] Tarte P and Preudhomme J 1973 Spectrochimica Acta Part A: Molecular Spectroscopy 29 1301
[33] Granado E, García A, Sanjurjo J A, Rettori C, Torriani I, Prado F, Sánchez R D, Caneiro A and Oseroff S B 1999 Phys. Rev. B 60 11879
[34] Wang Z, Schiferl D, Zhao Y and O’Neill H S C 2003 Journal of Physics and Chemistry of Solids 64 2517
[35] Wang Z, Downs R T, Pischedda V, Shetty R, Saxena S K, Zha C S, Zhao Y S, Schiferl D and Waskowska A 2003 Phys. Rev. B 68 094101
[36] Rahman S, Samanta S, Errandonea D, Yan S, Yang K, Lu J and Wang L 2017 Phys. Rev. B 95 024107
[37] Fei Y and Ahrens T 1995 Mineral physics and crystallography: a handbook of physical constants (American Geophysical Union) 2 pp. 29–44
[38] Balkanski M, Wallis R F and Haro E 1983 Phys. Rev. B 28 1928
[39] Gasanly N, Aydnl A, O zkan H and Kocabas C 2002Materials Research Bulletin 37 169
[40] Pulvirenti P and Jiles D 1996 IEEE Transactions on Magnetics 32 4785
[41] Wakamura K 1989 Solid State Commun. 71 1033
[1] Manipulating the magnetic properties of MnBi2Te4 through electrochemical organic molecule intercalation
Yu Du(杜钰), Heng Zhang(张恒), Fuwei Zhou(周福伟), Tianqi Wang(王天奇), Jiajun Li(李佳骏), Wuyi Qi(戚无逸), Yiying Zhang (张祎颖), Yefan Yu(俞业凡), Fucong Fei(费付聪), and Fengqi Song(宋凤麒). Chin. Phys. B, 2025, 34(8): 087302.
[2] Intensity enhancement of Raman active and forbidden modes induced by naturally occurred hot spot at GaAs edge
Tao Liu(刘涛), Miao-Ling Lin(林妙玲), Da Meng(孟达), Xin Cong(从鑫), Qiang Kan(阚强), Jiang-Bin Wu(吴江滨), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2025, 34(1): 017801.
[3] Preparation and magnetic hardening of low Ti content (Sm,Zr)(Fe,Co,Ti)12 magnets by rapid solidification non-equilibrium method
Xing-Feng Zhang(张兴凤), Li-Bin Liu(刘立斌), Yu-Qing Li(李玉卿), Dong-Tao Zhang(张东涛), Wei-Qiang Liu(刘卫强), and Ming Yue(岳明). Chin. Phys. B, 2024, 33(9): 097503.
[4] Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋), and Yun-Peng Wang(王云鹏). Chin. Phys. B, 2024, 33(9): 097507.
[5] Magnetic and magnetocaloric effect of Er20Ho20Dy20Cu20Ni20 high-entropy metallic glass
Shi-Lin Yu(于世霖), Lu Tian(田路), Jun-Feng Wang(王俊峰), Xin-Guo Zhao(赵新国), Da Li(李达), Zhao-Jun Mo(莫兆军), and Bing Li(李昺). Chin. Phys. B, 2024, 33(5): 057502.
[6] Broadband bidirectional Brillouin-Raman random fiber laser with ultra-narrow linewidth
Qian Yang(杨茜), Yang Li(李阳), Hui Zou(邹辉), Jie Mei(梅杰), En-Ming Xu(徐恩明), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2024, 33(2): 024206.
[7] Identifying the effect of photo-generated carriers on the phonons in rutile TiO2 through Raman spectroscopy
Zheng Wang(王征), Min Liao(廖敏), Guihua Wang(王桂花), and Meng Zhang(张梦). Chin. Phys. B, 2024, 33(11): 117802.
[8] Suppression of stimulated Brillouin and Raman scatterings using an alternating frequency laser and transverse magnetic fields
Rui-Jin Cheng(程瑞锦), Xiao-Xun Li(李晓旬), Qing Wang(王清), De-Ji Liu(刘德基), Zhuo-Ming Huang(黄卓明), Shuai-Yu Lv(吕帅宇), Yuan-Zhi Zhou(周远志), Shu-Tong Zhang(张舒童), Xue-Ming Li(李雪铭), Zu-Jie Chen(陈祖杰), Qiang Wang(王强), Zhan-Jun Liu(刘占军), Li-Hua Cao(曹莉华), and Chun-Yang Zheng(郑春阳). Chin. Phys. B, 2024, 33(1): 015206.
[9] Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization
Luyi Sun(孙路易), Fangyuan Zhai(翟方园), Zengqiang Cao(曹增强), Xiaoyu Huang(黄晓宇), Chunsheng Guo(郭春生), Hongyan Wang(王红艳), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2023, 32(5): 056301.
[10] Lattice thermal conductivity switching via structural phase transition in ferromagnetic VI3
Chao Wu(吴超) and Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(5): 056502.
[11] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[12] Straight and twisted Weyl nodal line phonons in Ho2CF2 material
Xin-Yue Kang(康鑫越), Jin-Yang Li(李金洋), and Si Li(李思). Chin. Phys. B, 2023, 32(11): 116301.
[13] Structure, magnetism and magnetocaloric effects in Er5Si3Bx (x=0.3, 0.6) compounds
Zhihong Hao(郝志红), Hui Liu(刘辉), and Juguo Zhang(张聚国). Chin. Phys. B, 2023, 32(11): 117501.
[14] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[15] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
No Suggested Reading articles found!