Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(3): 038904    DOI: 10.1088/1674-1056/adb8bd
Special Issue: SPECIAL TOPIC — Computational programs in complex systems
SPECIAL TOPIC — Computational programs in complex systems Prev  

Algorithm for computing time correlation functions in non-stationary complex dynamic systems

Jiu Zhang(张鹫)1, Lifu Jin(金立孚)2, Bo Zheng(郑波)3,†, Xiongfei Jiang(蒋雄飞)4, Tingting Chen(陈婷婷)5, Cong Xu(徐匆)1,‡, and Yanqing Hu(胡延庆)1
1 Department of Statistics and Data Science, Southern University of Science and Technology, Shenzhen 518055, China;
2 School of Economics and Management, Wenzhou University of Technology, Wenzhou 325035, China;
3 School of Physics and Astronomy, Yunnan University, Kunming 650091, China;
4 College of Finance and Information, Ningbo University of Finance and Economics, Ningbo 315175, China;
5 School of Finance, Zhejiang University of Finance and Economics, Hangzhou 310000, China
Abstract  For non-stationary complex dynamic systems, a standardized algorithm is developed to compute time correlation functions, addressing the limitations of traditional methods reliant on the stationary assumption. The proposed algorithm integrates two-point and multi-point time correlation functions into a unified framework. Further, it is verified by a practical application in complex financial systems, demonstrating its potential in various complex dynamic systems.
Keywords:  complex dynamic systems      non-stationary states      time correlation functions  
Received:  27 December 2024      Revised:  17 February 2025      Accepted manuscript online:  21 February 2025
PACS:  89.75.-k (Complex systems)  
  89.65.Gh (Economics; econophysics, financial markets, business and management)  
  05.45.Tp (Time series analysis)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
Fund: Project supported by the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation (Grant No. GZC20231050), the National Natural Science Foundation of China (Grant Nos. 12175193 and 11905183), and the 13th Five-year plan for Education Science Funding of Guangdong Province (Grant No. 2021GXJK349).
Corresponding Authors:  Bo Zheng, Cong Xu     E-mail:  zhengbo@zju.edu.cn;xuc6@sustech.edu.cn

Cite this article: 

Jiu Zhang(张鹫), Lifu Jin(金立孚), Bo Zheng(郑波), Xiongfei Jiang(蒋雄飞), Tingting Chen(陈婷婷), Cong Xu(徐匆), and Yanqing Hu(胡延庆) Algorithm for computing time correlation functions in non-stationary complex dynamic systems 2025 Chin. Phys. B 34 038904

[1] Kwapień J and Drożdż S 2012 Phys. Rep. 515 115
[2] Young J G, St O G, Laurence E, Murphy C, Hébert D L and Desrosiers P 2019 Phys. Rev. X 9 041056
[3] Papaefthymiou E S, Iordanou C and Papadopoulos F 2024 Phys. Rev. Lett. 132 257401
[4] Wang J, Zhang Y J, Xu C, Li J, Sun J, Xie J, Feng L, Zhou T and Hu Y 2024 Nat. Commun. 15 2849
[5] Plerou V, Gopikrishnan P, Rosenow B, Amaral L A N and Stanley H E 1999 Phys. Rev. Lett. 83 1471
[6] Bouchaud J P, Matacz A and Potters M 2001 Phys. Rev. Lett. 87 228701
[7] Wang Y J, Cheng H, Edwards R L, He Y Q, Kong X G, An Z S, Wu J Y, Kelly M J, Dykoski C A and Li X D 2005 Science 308 854
[8] Shen J and Zheng B 2009 Europhys. Lett. 86 48005
[9] Jiang X F and Zheng B 2012 Europhys. Lett. 97 48006
[10] Chen T T, Zheng B, Li Y and Jiang X F 2018 New J. Phys. 20 073005
[11] Zhang J, Jin L F, Zheng B, Li Y and Jiang X F 2022 Physica A 589 126615
[12] Zhang J, Zheng B, Jin L F, Li Y and Jiang X F 2024 Chin. J. Phys. 88 756
[13] Zhang X, Huang T, Wang C P and Zeng C H 2023 Physica A 609 128316
[14] Ivanov P C, Rosenblum M G, Peng C K, Mietus J, Havlin S, Stanley H E and Goldberger A L 1996 Nature 383 323
[15] Amaral L A N, Goldberger A L, Ivanov P C and Stanley H E 1998 Phys. Rev. Lett. 81 2388
[16] Mallika M C, Prabhaa S S, Asokan K, Kumar K S A, Ramamohan T R and Kumar K S 2021 Phys. Rev. E 104 054217
[17] Podobnik B and Stanley H E 2008 Phys. Rev. Lett. 100 084102
[18] Bassler K E, McCauley J L and Gunaratne G H 2007 Proc. Natl Acad. Sci. USA 104 17287
[19] Qiu T, Zheng B and Chen G 2010 New J. Phys. 12 043057
[20] Pan C P, Zheng B, Wu Y Z, Wang Y and Tang X W 2004 Phys. Lett. A 329 130
[21] Cherstvy A G, Vinod D, Aghion E, Chechkin A V and Metzler R 2017 New J. Phys. 19 063045
[22] Breakspear M 2017 Nat. Neurosci. 20 340
[23] Laloux L, Cizeau P, Bouchaud J P and Potters M 1999 Phys. Rev. Lett. 83 1467
[24] Plerou V, Gopikrishnan P, Rosenow B, Amaral L A N, Guhr T and Stanley H E 2002 Phys. Rev. E 65 066126
[25] Qiu T, Zheng B, Ren F and Trimper S 2006 Phys. Rev. E 73 065103
[26] Nagy M, Akos Z, Biro D and Vicsek T 2010 Nature 464 890
[27] Peng C K, Buldyrev S V, Havlin S, Simons M, Stanley H E and Goldberger A L 1994 Phys. Rev. E 49 1685
[28] Buldyrev S V, Goldberger A L, Havlin S, Mantegna R N, Matsa M E, Peng C K, Simons M and Stanley H E 1995 Phys. Rev. E 51 5084
[29] Hu K, Ivanov P C, Chen Z, Carpena P and Stanley H E 2001 Phys. Rev. E 64 011114
[30] Chen Z, Ivanov P C, Hu K and Stanley H E 2002 Phys. Rev. E 65 041107
[31] Ma Q D Y, Bartsch R P, Bernaola-Galván P, Yoneyama M and Ivanov P C 2010 Phys. Rev. E 81 031101
[32] Zhou W X 2008 Phys. Rev. E 77 066211
[33] Podobnik B, Jiang Z Q, Zhou W X and Stanley H E 2011 Phys. Rev. E 84 066118
[34] Zebende G F 2011 Physica A 390 614
[35] Oświeçimka P, Drożdż S, Forczek M, Jadach S and Kwapień J 2014 Phys. Rev. E 89 023305
[36] Kwapień J, Oświeçimka P and Drożdż S 2015 Phys. Rev. E 92 052815
[37] French K R, Schwert G W and Stambaugh R F 1987 J. Financ. Econ. 19 3
[38] Bekaert G and Wu G J 2000 Rev. Financ. Stud. 13 1
[39] Engle R F 1982 Econometrica 50 987
[40] Challet D and Zhang Y C 1997 Physica A 246 407
[41] Fehr E and Fischbacher U 2003 Nature 425 785
[42] Camerer C F and Fehr E 2006 Science 311 47
[43] Chakraborti A, Toke I M, Patriarca M and Abergel F 2011 Quant. Financ. 11 1013
[44] Chen J J, Tan L and Zheng B 2015 Sci. Rep. 5 8399
[45] Li Y, Zheng B, Chen T T and Jiang X F 2017 Plos One 12 12
[46] The website of the dataset is https://cn.investing.com
[47] Liu Y, Gopikrishnan P, Cizeau, Meyer, Peng and Stanley H E 1999 Phys. Rev. E 60 1390
[48] Menkhoff L 2010 J. Bank. Fin. 34 2573
[1] Node ranking based on graph curvature and PageRank
Hongbo Qu(曲鸿博), Yu-Rong Song(宋玉蓉), Ruqi Li(李汝琦), Min Li(李敏), and Guo-Ping Jiang(蒋国平). Chin. Phys. B, 2025, 34(2): 028901.
[2] Accurate prediction of essential proteins using ensemble machine learning
Dezhi Lu(鲁德志), Hao Wu(吴淏), Yutong Hou(侯俞彤), Yuncheng Wu(吴云成), Yuanyuan Liu(刘媛媛), and Jinwu Wang(王金武). Chin. Phys. B, 2025, 34(1): 018901.
[3] Hyperbolic map unravels eight regions in temperature volatility regionalization of Mainland China
Yuxuan Song(宋雨轩), Changgui Gu(顾长贵), Muhua Zheng(郑木华), Aixia Feng(冯爱霞), Yufei Xi(席雨菲), Haiying Wang(王海英), and Huijie Yang(杨会杰). Chin. Phys. B, 2024, 33(12): 128902.
[4] Impact of environmental factors on the coevolution of information-emotions-epidemic dynamics in activity-driven multiplex networks
Liang'an Huo(霍良安), Bingjie Liu(刘炳杰), and Xiaomin Zhao(赵晓敏). Chin. Phys. B, 2024, 33(12): 128903.
[5] A Weibo local network growth model constructed from the perspective of following-followed
Fu-Zhong Nian(年福忠) and Ran-Qing Yao(姚然庆). Chin. Phys. B, 2024, 33(12): 128702.
[6] Identify information sources with different start times in complex networks based on sparse observers
Yuan-Zhang Deng(邓元璋), Zhao-Long Hu(胡兆龙), Feilong Lin(林飞龙), Chang-Bing Tang(唐长兵), Hui Wang(王晖), and Yi-Zhen Huang(黄宜真). Chin. Phys. B, 2024, 33(11): 118901.
[7] Bipartite consensus problems of Lurie multi-agent systems over signed graphs: A contraction approach
Xiaojiao Zhang(张晓娇) and Xiang Wu(吴祥). Chin. Phys. B, 2024, 33(7): 070204.
[8] Individual dynamics and local heterogeneity provide a microscopic view of the epidemic spreading
Youyuan Zhu(朱友源), Ruizhe Shen(沈瑞哲), Hao Dong(董昊), and Wei Wang(王炜). Chin. Phys. B, 2024, 33(5): 058301.
[9] Effects of individual heterogeneity on social contagions
Fu-Zhong Nian(年福忠) and Yu Yang(杨宇). Chin. Phys. B, 2024, 33(5): 058705.
[10] Chimera states of phase oscillator populations with nonlocal higher-order couplings
Yonggang Wu(伍勇刚), Huajian Yu(余华健), Zhigang Zheng(郑志刚), and Can Xu(徐灿). Chin. Phys. B, 2024, 33(4): 040504.
[11] Source localization in signed networks with effective distance
Zhi-Wei Ma(马志伟), Lei Sun(孙蕾), Zhi-Guo Ding(丁智国), Yi-Zhen Huang(黄宜真), and Zhao-Long Hu(胡兆龙). Chin. Phys. B, 2024, 33(2): 028902.
[12] Identifying influential spreaders in social networks: A two-stage quantum-behaved particle swarm optimization with Lévy flight
Pengli Lu(卢鹏丽), Jimao Lan(揽继茂), Jianxin Tang(唐建新), Li Zhang(张莉), Shihui Song(宋仕辉), and Hongyu Zhu(朱虹羽). Chin. Phys. B, 2024, 33(1): 018901.
[13] Essential proteins identification method based on four-order distances and subcellular localization information
Pengli Lu(卢鹏丽), Yu Zhong(钟雨), and Peishi Yang(杨培实). Chin. Phys. B, 2024, 33(1): 018903.
[14] Analysis of radiation diffusion of COVID-19 driven by social attributes
Fuzhong Nian(年福忠), Xiaochen Yang(杨晓晨), and Yayong Shi(师亚勇). Chin. Phys. B, 2024, 33(1): 018904.
[15] Team-based fixed-time containment control for multi-agent systems with disturbances
Xiao-Wen Zhao(赵小文), Jin-Yue Wang(王进月), Qiang Lai(赖强), and Yuan Liu(刘源). Chin. Phys. B, 2023, 32(12): 120502.
No Suggested Reading articles found!