Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 110305    DOI: 10.1088/1674-1056/ad72e1
GENERAL Prev   Next  

Nonreciprocal mechanical entanglement in a spinning optomechanical system

Shan-Shan Chen(陈珊珊), Jing-Jing Zhang(张京京), Jia-Neng Li(李嘉能), Na-Na Zhang(张娜娜), Yong-Rui Guo(郭永瑞), and Huan Yang(杨桓)†
School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Abstract  Quantum entanglement between distant massive mechanical oscillators is an important resource in sensitive measurements and quantum information processing. We achieve the nonreciprocal mechanical entanglement in a compound optomechanical device consisting of two mechanical oscillators and a spinning whispering-gallery mode (WGM) optical microresonator. It is found that obvious nonreciprocal mechanical entanglement emerges in this system in the presence of the Sagnac effect which is induced by the rotation of the WGM resonator, and the nonreciprocal region can be controlled by tuning the angular velocity of the rotation. The nonreciprocity originates from the breaking of the time-reversal symmetry of this multimode system due to the presence of the Sagnac effect. The optomechanical coupling and the mechanical interaction provide cooling channels for the first and second mechanical oscillators, respectively. Two mechanical oscillators can be cooled simultaneously. The simultaneous cooling and the mechanical coupling of two mechanical oscillators ensure the generation of mechanical entanglement. Furthermore, an optimal mechanical entanglement can be achieved when the moderate optical frequency detuning and the driving power are chosen. The thermal noise of the mechanical environment has a negative effect on mechanical entanglement. Our scheme provides promising opportunities for research of quantum information processing based on phonons and sensitive measurements.
Keywords:  optomechanical system      quantum entanglement      nonreciprocity      Sagnac effect  
Received:  21 June 2024      Revised:  05 August 2024      Accepted manuscript online:  23 August 2024
PACS:  03.67.Bg (Entanglement production and manipulation)  
  42.50.-p (Quantum optics)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: This work was supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202400624) and the Natural Science Foundation of Chongqing CSTC (Grant No. CSTB2022NSCQ-BHX0020).
Corresponding Authors:  Huan Yang     E-mail:  yanghuan@cqupt.edu.cn

Cite this article: 

Shan-Shan Chen(陈珊珊), Jing-Jing Zhang(张京京), Jia-Neng Li(李嘉能), Na-Na Zhang(张娜娜), Yong-Rui Guo(郭永瑞), and Huan Yang(杨桓) Nonreciprocal mechanical entanglement in a spinning optomechanical system 2024 Chin. Phys. B 33 110305

[1] Andersen U L, Leuchs G and Silberhorn C 2010 Laser Photon. Rev. 3 337
[2] Nielsen M A and Chuang I L 2010 Quantum computation and quantum information (Cambridge: Cambridge University Press)
[3] Shiri J, Khalilzadeh J and Asadpour S H 2022 Optoelectron. Lett. 18 687
[4] Liu Y Y, Zhang Z M, Liu J H, Wang J D and Yu Y F 2022 Chin. Phys. B 31 094203
[5] Yang W Q, Leng X, Cheng J and Zhang W Z 2024 Chin. Phys. B 33 060313
[6] Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A and Zukowski M 2012 Rev. Mod. Phys. 84 777
[7] Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281
[8] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
[9] Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623
[10] Shen Y R and Bloembergen N 1965 Phys. Rev. 137 A1787
[11] Yariv A 1965 IEEE J. Quantum Electron. 1 28
[12] Bahl G, Kim K H, Lee W, Liu J, Fan X and Carmon T 2013 Nat. Commun. 4 1994
[13] Zhang Z X, Qi L, Cui W X, Zhang S and Wang H F 2022 Chin. Phys. B 31 070301
[14] Tomes M and Carmon T 2009 Phys. Rev. Lett. 102 113601
[15] Paz J P and Roncaglia A J 2008 Phys. Rev. Lett. 100 220401
[16] Xu X W, Zhao Y J and Liu Y X 2013 Phys. Rev. A 88 022325
[17] Liao J Q, Wu Q Q, Nori F, et al. 2014 Phys. Rev. A 89 014302
[18] Woolley M and Clerk A 2014 Phys. Rev. A 89 063805
[19] Wang M, Lü X Y, Wang Y D, You J and Wu Y 2016 Phys. Rev. A 94 053807
[20] Ockeloen-Korppi C, Damskägg E, Pirkkalainen J M, Asjad M, Clerk A, Massel F, Woolley M and Sillanpää M 2018 Nature 556 478
[21] Muschik C A, Polzik E S and Cirac J I 2011 Phys. Rev. A 83 052312
[22] Wang Y D and Clerk A A 2013 Phys. Rev. Lett. 110 253601
[23] Tan H, Li G and Meystre P 2013 Phys. Rev. A 87 033829
[24] Tomadin A, Diehl S, Lukin M D, Rabl P and Zoller P 2012 Phys. Rev. A 86 033821
[25] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[26] Mari A and Eisert J 2009 Phys. Rev. Lett. 103 213603
[27] Schmidt M, Ludwig M and Marquardt F 2012 New J. Phys. 14 125005
[28] Woolley M, Doherty A, Milburn G and Schwab K 2008 Phys. Rev. A 78 062303
[29] Kronwald A, Marquardt F and Clerk A A 2013 Phys. Rev. A 88 063833
[30] Lü X Y, Liao J Q, Tian L and Nori F 2015 Phys. Rev. A 91 013834
[31] Bai C H, Wang D Y, Zhang S, Liu S and Wang H F 2020 Phys. Rev. A 101 053836
[32] Peng R, Zhao C, Yang Z, Yang J and Zhou L 2023 Phys. Rev. A 107 013507
[33] Miki D, Matsumoto N, Matsumura A, Shichijo T, Sugiyama Y, Yamamoto K and Yamamoto N 2023 Phys. Rev. A 107 032410
[34] O’Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, et al. 2010 Nature 464 697
[35] Chan J, Alegre T M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M and Painter O 2011 Nature 478 89
[36] Xu H, Jiang L, Clerk A and Harris J 2019 Nature 568 65
[37] Huang J, Lai D G, Liu C, Huang J F, Nori F and Liao J Q 2022 Phys. Rev. A 106 013526
[38] Mancini S, Giovannetti V, Vitali D and Tombesi P 2002 Phys. Rev. Lett. 88 120401
[39] Pinard M, Dantan A, Vitali D, Arcizet O, Briant T and Heidmann A 2005 Europhys. Lett. 72 747
[40] Li J, Haghighi I M, Malossi N, Zippilli S and Vitali D 2015 New J. Phys. 17 103037
[41] Auld B 1959 IRE Trans. Microwave Theory Tech. 7 238
[42] Milano U, Saunders J H and Davis L Jr 1960 IRE Trans. Microwave Theory Tech. 8 346
[43] Hadad Y and Steinberg B Z 2010 Phys. Rev. Lett. 105 233904
[44] Bi L, Hu J, Jiang P, Kim D H, Dionne G F, Kimerling L C and Ross C 2011 Nat. Photon. 5 758
[45] Sounas D L, Caloz C and Alu A 2013 Nat. Commun. 4 2407
[46] Estep N A, Sounas D L, Soric J and Alu A 2014 Nat. Phys. 10 923
[47] Sounas D L and Alu A 2014 ACS Photon. 1 198
[48] Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192
[49] Feng L, Ayache M, Huang J, Xu Y L, Lu M H, Chen Y F, Fainman Y and Scherer A 2011 Science 333 729
[50] Wu J H, Artoni M and La Rocca G C 2014 Phys. Rev. Lett. 113 123004
[51] Chen S S, Meng S S, Deng H and Yang G J 2021 Ann. Phys. 533 2000343
[52] Jiang Y, Maayani S, Carmon T, Nori F and Jing H 2018 Phys. Rev. Appl. 10 064037
[53] Jiao Y F, Liu J X, Li Y, Yang R, Kuang L M and Jing H 2022 Phys. Rev. Appl. 18 064008
[54] Jiao Y F, Zhang S D, Zhang Y L, Miranowicz A, Kuang L M and Jing H 2020 Phys. Rev. Lett. 125 143605
[55] Huang Z H, Jiao Y F, Yan L L, Wang D Y, Su S L and Jing H 2024 Phys. Rev. A 110 012423
[56] Chen J, Fan X G, Xiong W, Wang D and Ye L 2024 Phys. Rev. A 109 043512
[57] Chakraborty S and Das C 2023 Phys. Rev. A 108 063704
[58] Malykin G B 2000 Phys. Usp. 43 1229
[59] Lai D G, Zou F, Hou B P, Xiao Y F and Liao J Q 2018 Phys. Rev. A 98 023860
[60] Adesso G, Serafini A and Illuminati F 2004 Phys. Rev. A 70 022318
[61] Vahala K J 2003 Nature 424 839
[62] Ding L, Baker C, Senellart P, Lemaitre A, Ducci S, Leo G and Favero I 2011 Appl. Phys. Lett. 98 113108
[63] Huet V, Rasoloniaina A, Guillemé P, Rochard P, Féron P, Mortier M, Levenson A, Bencheikh K, Yacomotti A and Dumeige Y 2016 Phys. Rev. Lett. 116 133902
[64] Reimann R, Doderer M, Hebestreit E, Diehl R, Frimmer M, Windey D, Tebbenjohanns F and Novotny L 2018 Phys. Rev. Lett. 121 033602
[65] Ahn J, Xu Z, Bang J, Deng Y H, Hoang T M, Han Q, Ma R M and Li T 2018 Phys. Rev. Lett. 121 033603
[66] Lü H, Jiang Y, Wang Y Z and Jing H 2017 Photon. Res. 5 367
[67] Guo Q, Zhou K X, Bai C H, Zhang Y, Li G and Zhang T 2023 Phys. Rev. A 108 033515
[1] Generation of macroscopic entanglement in ensemble systems based on silicon vacancy centers
Jian-Zhuang Wu(武建壮), Ying Xi(奚滢), Bo-Ya Li(李博雅), Lian-E Lu(芦连娥), and Yong-Hong Ma(马永红). Chin. Phys. B, 2024, 33(9): 090308.
[2] Delayed-measurement one-way quantum computing on cloud quantum computer
Zhi-Peng Yang(杨智鹏), Yu-Ran Zhang(张煜然), Fu-Li Li(李福利), and Heng Fan(范桁). Chin. Phys. B, 2024, 33(9): 090304.
[3] Entangling two levitated charged nanospheres through Coulomb interaction
Guoyao Li(李国耀) and Zhangqi Yin(尹璋琦). Chin. Phys. B, 2024, 33(7): 074205.
[4] Detecting the quantum phase transition from the perspective of quantum information in the Aubry-André model
Geng-Biao Wei(韦庚彪), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2024, 33(7): 070301.
[5] Nonlinearly induced entanglement in dissipatively coupled optomechanical system
Wen-Quan Yang(杨文全), Xuan Leng(冷轩), Jiong Cheng(程泂), and Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2024, 33(6): 060313.
[6] Effects of cross-Kerr coupling on transmission spectrum of double-cavity optomechanical system
Li-Teng Chen(陈立滕), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Jie-Hui Huang(黄接辉), Nan-Run Zhou(周南润), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2024, 33(6): 064204.
[7] Single-photon scattering and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system
Jin-Song Huang(黄劲松), Hong-Wu Huang(黄红武), Yan-Ling Li(李艳玲), and Zhong-Hui Xu(徐中辉). Chin. Phys. B, 2024, 33(5): 050506.
[8] Entanglement properties of superconducting qubits coupled to a semi-infinite transmission line
Yang-Qing Guo(郭羊青), Ping-Xing Chen(陈平形), and Jian Li(李剑). Chin. Phys. B, 2023, 32(6): 060302.
[9] Design and simulation of a silicon-based hybrid integrated optical gyroscope system
Dao-Xin Sun(孙道鑫), Dong-Liang Zhang(张东亮), Li-Dan Lu(鹿利单), Tao Xu(徐涛),Xian-Tong Zheng(郑显通), Zhe-Hai Zhou(周哲海), and Lian-Qing Zhu(祝连庆). Chin. Phys. B, 2023, 32(4): 044212.
[10] Nonreciprocal negative refraction in a dense hot atomic medium
Hai Yi(易海), Hongjun Zhang(张红军), and Hui Sun(孙辉). Chin. Phys. B, 2023, 32(4): 044202.
[11] Generation of microwave photon perfect W states of three coupled superconducting resonators
Xin-Ke Li(李新克), Yuan Zhou(周原), Guang-Hui Wang(王光辉), Dong-Yan Lv(吕东燕),Fazal Badshah, and Hai-Ming Huang(黄海铭). Chin. Phys. B, 2023, 32(4): 040306.
[12] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[13] Enhancement of the group delay in quadratic coupling optomechanical systems subjected to an external force
Jimmi Hervé Talla Mbé, Ulrich Chancelin Tiofack Demanou, Christian Kenfack-Sadem, and Martin Tchoffo. Chin. Phys. B, 2023, 32(12): 124202.
[14] Effects of quantum quench on entanglement dynamics in antiferromagnetic Ising model
Yue Li(李玥), Panpan Fang(房盼盼), Zhe Wang(王哲), Panpan Zhang(张盼盼), Yuliang Xu(徐玉良), and Xiangmu Kong(孔祥木). Chin. Phys. B, 2023, 32(10): 100303.
[15] State transfer and entanglement between two- and four-level atoms in a cavity
Si-Wu Li(李思吾), Tianfeng Feng(冯田峰), Xiao-Long Hu(胡骁龙), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2023, 32(10): 104214.
No Suggested Reading articles found!