|
|
Floquet engineering of a dynamical Z2 lattice gauge field with ultracold atoms |
Xiangxiang Sun(孙祥祥)1,2, Hao-Yue Qi(齐浩月)1,2, Pengfei Zhang(张鹏飞)3,4,5,†, and Wei Zheng(郑炜)1,2,5,‡ |
1 Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China; 2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 3 Department of Physics, Fudan University, Shanghai 200438, China; 4 Shanghai Qi Zhi Institute, AI Tower, Xuhui District, Shanghai 200232, China; 5 Hefei National Laboratory, Hefei 230088, China |
|
|
Abstract Gauge field theory is a fundamental concept in modern physics, attracting many theoretical and experimental efforts towards its simulation. In this paper we propose that a simple model, in which fermions coupled to a dynamical lattice gauge field, can be engineered via the Floquet approach. The model possesses both an independent Maxwell term and local $Z_{2}$ gauge symmetry. Our proposal relies on a species-dependent optical lattice, and can be achieved in one, two or three dimensions. By a unitary transformation, this model can be mapped into a non-interacting composite fermion system with fluctuating background charge. With the help of this composite fermion picture, two characteristic observations are predicted. One is radio-frequency spectroscopy, which exhibits no dispersion in all parameter regimes. The second is dynamical localization, which depends on the structure of the initial states.
|
Received: 24 May 2024
Revised: 08 August 2024
Accepted manuscript online: 30 August 2024
|
PACS:
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
11.15.Ha
|
(Lattice gauge theory)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. GG2030007011 (WZ), GG203004045 (WZ), and 12374477(PZ)) and Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302004 (WZ)) |
Corresponding Authors:
Pengfei Zhang, Wei Zheng
E-mail: PengfeiZhang.physics@gmail.com;zw8796@ustc.edu.cn
|
Cite this article:
Xiangxiang Sun(孙祥祥), Hao-Yue Qi(齐浩月), Pengfei Zhang(张鹏飞), and Wei Zheng(郑炜) Floquet engineering of a dynamical Z2 lattice gauge field with ultracold atoms 2024 Chin. Phys. B 33 110304
|
[1] Kogut J B 1979 Rev. Mod. Phys 51 659 [2] Balents L 2010 Nature 464 199 [3] Read N and Sachdev S 1991 Phys. Rev. Lett. 66 1773 [4] Jalabert R A and Sachdev S 1991 Phys. Rev. B 44 686 [5] Baskaran G and Anderson P W 1988 Phys. Rev. B 37 580 [6] Read N and Sachdev S 1990 Phys. Rev. B 42 4568 [7] Affleck I and Marston J B 1988 Phys. Rev. B 37 3774 [8] Senthil T and Fisher M P A 2020 Phys. Rev. B 62 7850 [9] Kivelson S A, Rokhsar D S and Sethna J P 1987 Phys. Rev. B 35 8865 [10] Moessner R, Sondhi S L and Fradkin E 2001 Phys. Rev. B 65 024504 [11] Wiese U 2013 Ann. Phys. (Berlin) 525 777 [12] Assaad F F and Grover T 2016 Phys. Rev. X 6 041049 [13] Martinez E A, Muschik C A, Schindler P, Nigg D, Erhard A, Heyl M, Hauke Pp, Dalmonte M, Monz T, Zoller P and Blatt R 2016 Nature 534 516 [14] Zohar E, Farace E A, Reznik B and Cirac J I 2017 Phys. Rev. Lett. 118 070501 [15] Barbiero L, Schweizer C, Aidelsburger M, Demler E, Goldman N and Fa G 2019 Sci. Adv. 5 7444 [16] Lin Y J, Compton R L, Jiménez-García K, Phillips W D, Porto J V and Spielman I B 2011 Nat. Phys. 7 531 [17] Lin Y J, Compton R L, Jiménez-García K, Porto J V and Spielman I B 2009 Nature 462 628 [18] Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83 [19] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J and Pan J W 2016 Science 354 83 [20] Clark L W, Anderson B M, Feng L, Gaj A, Levin K and Chin C 2018 Phys. Rev. Lett. 121 030402 [21] Görg F, Sandholzer K, Minguzzi J, Desbuquois R, Messer M and Esslinger T 2019 Nat. Phys. 15 1161 [22] Kroeze R M, Guo Y and Lev B L 2019 Phys. Rev. Lett. 123 160404 [23] Schweizer C, Grusdt F, Berngruber M, Barbiero L, Demler E, Goldman N, Bloch I and Aidelsburger M 2019 Nat. Phys. 15 1168 [24] Yang B, Sun H, Ott R, Wang H Y, Zache T V, Halimeh J C, Yuan Z S, Hauke P and Pan J W 2020 Nature 587 392 [25] Mil A, Zache T V, Hegde A, Xia A, Bhatt R P, Oberthaler M K, Hauke P, Berges J and Jendrzejewski F 2020 Science 367 1128 [26] Zhou Z Y, Su G X, Halimeh J C, Ott R, Sun H, Hauke P, Yang B, Yuan Z S, Berges J and Pan J W 2022 Science 377 311 [27] Wang H Y, Zhang W Y, Yao Z Y, Liu Y, Zhu Z H, Zheng Y G, Wang X K, Zhai H, Yuan Z S and Pan J W 2023 Phys. Rev. Lett. 131 050401 [28] Zhang W Y, Liu Y, Cheng Y, He M G, Wang H Y, Wang T Y, Zhu Z H, Su G X, Zhou Z Y, Zheng Y G, Sun H, Yang B, Hauke P, Zheng W, Halimeh J C, Yuan Z S and Pan J W arXiv:2306.11794 [29] Rüegg A, Huber S D and Sigrist M 2010 Phys. Rev. B 81 155118 [30] Nandkishore R, Metlitski M A and Senthil T 2012 Phys. Rev. B 86 045128 [31] Gazit S, Assaad F F and Sachdev S 2020 Phys. Rev. X 10 041057 [32] Chen C, Xu X Y, Qi Y and Meng Z Y 2020 Chin. Phys. Lett. 37 047103 [33] Prosko C, Lee S P and Maciejko J 2017 Phys. Rev. B 96 205104 [34] Qi H Y and Zheng W 2024 Phys. Rev. Res. 6 013047 [35] Anderson P W 1967 Phys. Rev. 164 352 [36] Mahan G D 1967 Phys. Rev. 153 882 [37] Roulet B, Gavoret J and Nozières P 1969 Phys. Rev. 178 1072 [38] Nozieres P, Roulet B and Gavoret J 1969 Phys. Rev. 178 1084 [39] Nozières P and De Dominicis C T 1969 Phys. Rev. 178 1097 [40] Benjamin D, Abanin D, Abbamonte P and Demler E 2013 Phys. Rev. Lett. 110 137002 [41] Smith A, Knolle J, Kovrizhin D L and Moessner R 2017 Phys. Rev. Lett. 118 266601 [42] Brenes M, Dalmonte M, Heyl M and Scardicchio A 2018 Phys. Rev. Lett. 120 030601 [43] Smith A, Knolle J, Moessner R and Kovrizhin D L 2018 Phys. Rev. B 97 245137 [44] Yarloo H, Mohseni-Rajaee M and Langari A 2019 Phys. Rev. B 99 054403 [45] Yao Z, Liu C, Zhang P and Zhai H 2020 Phys. Rev. B 102 104302 [46] Papaefstathiou I, Smith A and Knolle J 2020 Phys. Rev. B 102 165132 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|