Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 110304    DOI: 10.1088/1674-1056/ad7576
GENERAL Prev   Next  

Floquet engineering of a dynamical Z2 lattice gauge field with ultracold atoms

Xiangxiang Sun(孙祥祥)1,2, Hao-Yue Qi(齐浩月)1,2, Pengfei Zhang(张鹏飞)3,4,5,†, and Wei Zheng(郑炜)1,2,5,‡
1 Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 Department of Physics, Fudan University, Shanghai 200438, China;
4 Shanghai Qi Zhi Institute, AI Tower, Xuhui District, Shanghai 200232, China;
5 Hefei National Laboratory, Hefei 230088, China
Abstract  Gauge field theory is a fundamental concept in modern physics, attracting many theoretical and experimental efforts towards its simulation. In this paper we propose that a simple model, in which fermions coupled to a dynamical lattice gauge field, can be engineered via the Floquet approach. The model possesses both an independent Maxwell term and local $Z_{2}$ gauge symmetry. Our proposal relies on a species-dependent optical lattice, and can be achieved in one, two or three dimensions. By a unitary transformation, this model can be mapped into a non-interacting composite fermion system with fluctuating background charge. With the help of this composite fermion picture, two characteristic observations are predicted. One is radio-frequency spectroscopy, which exhibits no dispersion in all parameter regimes. The second is dynamical localization, which depends on the structure of the initial states.
Keywords:  gauge theory      quantum simulations  
Received:  24 May 2024      Revised:  08 August 2024      Accepted manuscript online:  30 August 2024
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  11.15.Ha (Lattice gauge theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. GG2030007011 (WZ), GG203004045 (WZ), and 12374477(PZ)) and Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302004 (WZ))
Corresponding Authors:  Pengfei Zhang, Wei Zheng     E-mail:  PengfeiZhang.physics@gmail.com;zw8796@ustc.edu.cn

Cite this article: 

Xiangxiang Sun(孙祥祥), Hao-Yue Qi(齐浩月), Pengfei Zhang(张鹏飞), and Wei Zheng(郑炜) Floquet engineering of a dynamical Z2 lattice gauge field with ultracold atoms 2024 Chin. Phys. B 33 110304

[1] Kogut J B 1979 Rev. Mod. Phys 51 659
[2] Balents L 2010 Nature 464 199
[3] Read N and Sachdev S 1991 Phys. Rev. Lett. 66 1773
[4] Jalabert R A and Sachdev S 1991 Phys. Rev. B 44 686
[5] Baskaran G and Anderson P W 1988 Phys. Rev. B 37 580
[6] Read N and Sachdev S 1990 Phys. Rev. B 42 4568
[7] Affleck I and Marston J B 1988 Phys. Rev. B 37 3774
[8] Senthil T and Fisher M P A 2020 Phys. Rev. B 62 7850
[9] Kivelson S A, Rokhsar D S and Sethna J P 1987 Phys. Rev. B 35 8865
[10] Moessner R, Sondhi S L and Fradkin E 2001 Phys. Rev. B 65 024504
[11] Wiese U 2013 Ann. Phys. (Berlin) 525 777
[12] Assaad F F and Grover T 2016 Phys. Rev. X 6 041049
[13] Martinez E A, Muschik C A, Schindler P, Nigg D, Erhard A, Heyl M, Hauke Pp, Dalmonte M, Monz T, Zoller P and Blatt R 2016 Nature 534 516
[14] Zohar E, Farace E A, Reznik B and Cirac J I 2017 Phys. Rev. Lett. 118 070501
[15] Barbiero L, Schweizer C, Aidelsburger M, Demler E, Goldman N and Fa G 2019 Sci. Adv. 5 7444
[16] Lin Y J, Compton R L, Jiménez-García K, Phillips W D, Porto J V and Spielman I B 2011 Nat. Phys. 7 531
[17] Lin Y J, Compton R L, Jiménez-García K, Porto J V and Spielman I B 2009 Nature 462 628
[18] Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
[19] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J and Pan J W 2016 Science 354 83
[20] Clark L W, Anderson B M, Feng L, Gaj A, Levin K and Chin C 2018 Phys. Rev. Lett. 121 030402
[21] Görg F, Sandholzer K, Minguzzi J, Desbuquois R, Messer M and Esslinger T 2019 Nat. Phys. 15 1161
[22] Kroeze R M, Guo Y and Lev B L 2019 Phys. Rev. Lett. 123 160404
[23] Schweizer C, Grusdt F, Berngruber M, Barbiero L, Demler E, Goldman N, Bloch I and Aidelsburger M 2019 Nat. Phys. 15 1168
[24] Yang B, Sun H, Ott R, Wang H Y, Zache T V, Halimeh J C, Yuan Z S, Hauke P and Pan J W 2020 Nature 587 392
[25] Mil A, Zache T V, Hegde A, Xia A, Bhatt R P, Oberthaler M K, Hauke P, Berges J and Jendrzejewski F 2020 Science 367 1128
[26] Zhou Z Y, Su G X, Halimeh J C, Ott R, Sun H, Hauke P, Yang B, Yuan Z S, Berges J and Pan J W 2022 Science 377 311
[27] Wang H Y, Zhang W Y, Yao Z Y, Liu Y, Zhu Z H, Zheng Y G, Wang X K, Zhai H, Yuan Z S and Pan J W 2023 Phys. Rev. Lett. 131 050401
[28] Zhang W Y, Liu Y, Cheng Y, He M G, Wang H Y, Wang T Y, Zhu Z H, Su G X, Zhou Z Y, Zheng Y G, Sun H, Yang B, Hauke P, Zheng W, Halimeh J C, Yuan Z S and Pan J W arXiv:2306.11794
[29] Rüegg A, Huber S D and Sigrist M 2010 Phys. Rev. B 81 155118
[30] Nandkishore R, Metlitski M A and Senthil T 2012 Phys. Rev. B 86 045128
[31] Gazit S, Assaad F F and Sachdev S 2020 Phys. Rev. X 10 041057
[32] Chen C, Xu X Y, Qi Y and Meng Z Y 2020 Chin. Phys. Lett. 37 047103
[33] Prosko C, Lee S P and Maciejko J 2017 Phys. Rev. B 96 205104
[34] Qi H Y and Zheng W 2024 Phys. Rev. Res. 6 013047
[35] Anderson P W 1967 Phys. Rev. 164 352
[36] Mahan G D 1967 Phys. Rev. 153 882
[37] Roulet B, Gavoret J and Nozières P 1969 Phys. Rev. 178 1072
[38] Nozieres P, Roulet B and Gavoret J 1969 Phys. Rev. 178 1084
[39] Nozières P and De Dominicis C T 1969 Phys. Rev. 178 1097
[40] Benjamin D, Abanin D, Abbamonte P and Demler E 2013 Phys. Rev. Lett. 110 137002
[41] Smith A, Knolle J, Kovrizhin D L and Moessner R 2017 Phys. Rev. Lett. 118 266601
[42] Brenes M, Dalmonte M, Heyl M and Scardicchio A 2018 Phys. Rev. Lett. 120 030601
[43] Smith A, Knolle J, Moessner R and Kovrizhin D L 2018 Phys. Rev. B 97 245137
[44] Yarloo H, Mohseni-Rajaee M and Langari A 2019 Phys. Rev. B 99 054403
[45] Yao Z, Liu C, Zhang P and Zhai H 2020 Phys. Rev. B 102 104302
[46] Papaefstathiou I, Smith A and Knolle J 2020 Phys. Rev. B 102 165132
[1] Multi-party semi-quantum private comparison protocol of size relation based on two-dimensional Bell states
Bing Wang(王冰), Li-Hua Gong(龚黎华), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2024, 33(11): 110303.
[2] A family of quantum von Neumann architecture
Dong-Sheng Wang(王东升). Chin. Phys. B, 2024, 33(8): 080302.
[3] Design of a novel hybrid quantum deep neural network in INEQR images classification
Shuang Wang(王爽), Ke-Han Wang(王柯涵), Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Hong-Yang Ma(马鸿洋), and Shuai Guo(郭帅). Chin. Phys. B, 2024, 33(6): 060310.
[4] Interplay between topology and localization on superconducting circuits
Xin Guan(关欣), Bingyan Huo(霍炳燕), and Gang Chen(陈刚). Chin. Phys. B, 2024, 33(6): 060311.
[5] A quantum blind signature scheme based on dense coding for non-entangled states
Ke Xing(邢柯), Ai-Han Yin(殷爱菡), and Yong-Qi Xue(薛勇奇). Chin. Phys. B, 2024, 33(6): 060309.
[6] Quafu-RL: The cloud quantum computers based quantum reinforcement learning
Yu-Xin Jin(靳羽欣), Hong-Ze Xu(许宏泽), Zheng-An Wang(王正安), Wei-Feng Zhuang(庄伟峰), Kai-Xuan Huang(黄凯旋), Yun-Hao Shi(时运豪), Wei-Guo Ma(马卫国), Tian-Ming Li(李天铭), Chi-Tong Chen(陈驰通), Kai Xu(许凯), Yu-Long Feng(冯玉龙), Pei Liu(刘培), Mo Chen(陈墨), Shang-Shu Li(李尚书), Zhi-Peng Yang(杨智鹏), Chen Qian(钱辰), Yun-Heng Ma(马运恒), Xiao Xiao(肖骁), Peng Qian(钱鹏), Yanwu Gu(顾炎武), Xu-Dan Chai(柴绪丹), Ya-Nan Pu(普亚南), Yi-Peng Zhang(张翼鹏), Shi-Jie Wei(魏世杰), Jin-Feng Zeng(曾进峰), Hang Li(李行), Gui-Lu Long(龙桂鲁), Yirong Jin(金贻荣), Haifeng Yu(于海峰), Heng Fan(范桁), Dong E. Liu(刘东), and Meng-Jun Hu(胡孟军). Chin. Phys. B, 2024, 33(5): 050301.
[7] Quafu-Qcover: Explore combinatorial optimization problems on cloud-based quantum computers
Hong-Ze Xu(许宏泽), Wei-Feng Zhuang(庄伟峰), Zheng-An Wang(王正安), Kai-Xuan Huang(黄凯旋), Yun-Hao Shi(时运豪), Wei-Guo Ma(马卫国), Tian-Ming Li(李天铭), Chi-Tong Chen(陈驰通), Kai Xu(许凯), Yu-Long Feng(冯玉龙), Pei Liu(刘培), Mo Chen(陈墨), Shang-Shu Li(李尚书), Zhi-Peng Yang(杨智鹏), Chen Qian(钱辰), Yu-Xin Jin(靳羽欣), Yun-Heng Ma(马运恒), Xiao Xiao(肖骁), Peng Qian(钱鹏), Yanwu Gu(顾炎武), Xu-Dan Chai(柴绪丹), Ya-Nan Pu(普亚南), Yi-Peng Zhang(张翼鹏), Shi-Jie Wei(魏世杰), Jin-Feng Zeng(增进峰), Hang Li(李行), Gui-Lu Long(龙桂鲁), Yirong Jin(金贻荣), Haifeng Yu(于海峰), Heng Fan(范桁), Dong E. Liu(刘东), and Meng-Jun Hu(胡孟军). Chin. Phys. B, 2024, 33(5): 050302.
[8] An anti-aliasing filtering of quantum images in spatial domain using a pyramid structure
Kai Wu(吴凯), Rigui Zhou(周日贵), and Jia Luo(罗佳). Chin. Phys. B, 2024, 33(5): 050305.
[9] Quantum generative adversarial networks based on a readout error mitigation method with fault tolerant mechanism
Run-Sheng Zhao(赵润盛), Hong-Yang Ma(马鸿洋), Tao Cheng(程涛), Shuang Wang(王爽), and Xing-Kui Fan(范兴奎). Chin. Phys. B, 2024, 33(4): 040304.
[10] Double quantum images encryption scheme based on chaotic system
She-Xiang Jiang(蒋社想), Yang Li(李杨), Jin Shi(石锦), and Ru Zhang(张茹). Chin. Phys. B, 2024, 33(4): 040306.
[11] Integer multiple quantum image scaling based on NEQR and bicubic interpolation
Shuo Cai(蔡硕), Ri-Gui Zhou(周日贵), Jia Luo(罗佳), and Si-Zhe Chen(陈思哲). Chin. Phys. B, 2024, 33(4): 040302.
[12] Analysis of learnability of a novel hybrid quantum—classical convolutional neural network in image classification
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Rui Wang(王睿), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2024, 33(4): 040303.
[13] Proposal for sequential Stern-Gerlach experiment with programmable quantum processors
Meng-Jun Hu(胡孟军), Haixing Miao(缪海兴), and Yong-Sheng Zhang(张永生). Chin. Phys. B, 2024, 33(2): 020303.
[14] Quantum algorithm for minimum dominating set problem with circuit design
Haoying Zhang(张皓颖), Shaoxuan Wang(王绍轩), Xinjian Liu(刘新建), Yingtong Shen(沈颖童), and Yukun Wang(王玉坤). Chin. Phys. B, 2024, 33(2): 020310.
[15] Gray code based gradient-free optimization algorithm for parameterized quantum circuit
Anqi Zhang(张安琪), Chunhui Wu(武春辉), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(2): 020311.
No Suggested Reading articles found!