Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 110304    DOI: 10.1088/1674-1056/ad7576
GENERAL Prev  

Floquet engineering of a dynamical Z2 lattice gauge field with ultracold atoms

Xiangxiang Sun(孙祥祥)1,2, Hao-Yue Qi(齐浩月)1,2, Pengfei Zhang(张鹏飞)3,4,5,†, and Wei Zheng(郑炜)1,2,5,‡
1 Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 Department of Physics, Fudan University, Shanghai 200438, China;
4 Shanghai Qi Zhi Institute, AI Tower, Xuhui District, Shanghai 200232, China;
5 Hefei National Laboratory, Hefei 230088, China
Abstract  Gauge field theory is a fundamental concept in modern physics, attracting many theoretical and experimental efforts towards its simulation. In this paper we propose that a simple model, in which fermions coupled to a dynamical lattice gauge field, can be engineered via the Floquet approach. The model possesses both an independent Maxwell term and local $Z_{2}$ gauge symmetry. Our proposal relies on a species-dependent optical lattice, and can be achieved in one, two or three dimensions. By a unitary transformation, this model can be mapped into a non-interacting composite fermion system with fluctuating background charge. With the help of this composite fermion picture, two characteristic observations are predicted. One is radio-frequency spectroscopy, which exhibits no dispersion in all parameter regimes. The second is dynamical localization, which depends on the structure of the initial states.
Keywords:  gauge theory      quantum simulations  
Received:  24 May 2024      Revised:  08 August 2024      Accepted manuscript online:  30 August 2024
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  11.15.Ha (Lattice gauge theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. GG2030007011(WZ), GG203004045(WZ), and 12374477(PZ)) and Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302004 (WZ)).
Corresponding Authors:  Pengfei Zhang, Wei Zheng     E-mail:  PengfeiZhang.physics@gmail.com;zw8796@ustc.edu.cn

Cite this article: 

Xiangxiang Sun(孙祥祥), Hao-Yue Qi(齐浩月), Pengfei Zhang(张鹏飞), and Wei Zheng(郑炜) Floquet engineering of a dynamical Z2 lattice gauge field with ultracold atoms 2024 Chin. Phys. B 33 110304

[1] Kogut J B 1979 Rev. Mod. Phys 51 659
[2] Balents L 2010 Nature 464 199
[3] Read N and Sachdev S 1991 Phys. Rev. Lett. 66 1773
[4] Jalabert R A and Sachdev S 1991 Phys. Rev. B 44 686
[5] Baskaran G and Anderson P W 1988 Phys. Rev. B 37 580
[6] Read N and Sachdev S 1990 Phys. Rev. B 42 4568
[7] Affleck I and Marston J B 1988 Phys. Rev. B 37 3774
[8] Senthil T and Fisher M P A 2020 Phys. Rev. B 62 7850
[9] Kivelson S A, Rokhsar D S and Sethna J P 1987 Phys. Rev. B 35 8865
[10] Moessner R, Sondhi S L and Fradkin E 2001 Phys. Rev. B 65 024504
[11] Wiese U 2013 Ann. Phys. (Berlin) 525 777
[12] Assaad F F and Grover T 2016 Phys. Rev. X 6 041049
[13] Martinez E A, Muschik C A, Schindler P, Nigg D, Erhard A, Heyl M, Hauke Pp, Dalmonte M, Monz T, Zoller P and Blatt R 2016 Nature 534 516
[14] Zohar E, Farace E A, Reznik B and Cirac J I 2017 Phys. Rev. Lett. 118 070501
[15] Barbiero L, Schweizer C, Aidelsburger M, Demler E, Goldman N and Fa G 2019 Sci. Adv. 5 7444
[16] Lin Y J, Compton R L, Jiménez-García K, Phillips W D, Porto J V and Spielman I B 2011 Nat. Phys. 7 531
[17] Lin Y J, Compton R L, Jiménez-García K, Porto J V and Spielman I B 2009 Nature 462 628
[18] Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
[19] Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J and Pan J W 2016 Science 354 83
[20] Clark L W, Anderson B M, Feng L, Gaj A, Levin K and Chin C 2018 Phys. Rev. Lett. 121 030402
[21] Görg F, Sandholzer K, Minguzzi J, Desbuquois R, Messer M and Esslinger T 2019 Nat. Phys. 15 1161
[22] Kroeze R M, Guo Y and Lev B L 2019 Phys. Rev. Lett. 123 160404
[23] Schweizer C, Grusdt F, Berngruber M, Barbiero L, Demler E, Goldman N, Bloch I and Aidelsburger M 2019 Nat. Phys. 15 1168
[24] Yang B, Sun H, Ott R, Wang H Y, Zache T V, Halimeh J C, Yuan Z S, Hauke P and Pan J W 2020 Nature 587 392
[25] Mil A, Zache T V, Hegde A, Xia A, Bhatt R P, Oberthaler M K, Hauke P, Berges J and Jendrzejewski F 2020 Science 367 1128
[26] Zhou Z Y, Su G X, Halimeh J C, Ott R, Sun H, Hauke P, Yang B, Yuan Z S, Berges J and Pan J W 2022 Science 377 311
[27] Wang H Y, Zhang W Y, Yao Z Y, Liu Y, Zhu Z H, Zheng Y G, Wang X K, Zhai H, Yuan Z S and Pan J W 2023 Phys. Rev. Lett. 131 050401
[28] Zhang W Y, Liu Y, Cheng Y, He M G, Wang H Y, Wang T Y, Zhu Z H, Su G X, Zhou Z Y, Zheng Y G, Sun H, Yang B, Hauke P, Zheng W, Halimeh J C, Yuan Z S and Pan J W arXiv:2306.11794
[29] Rüegg A, Huber S D and Sigrist M 2010 Phys. Rev. B 81 155118
[30] Nandkishore R, Metlitski M A and Senthil T 2012 Phys. Rev. B 86 045128
[31] Gazit S, Assaad F F and Sachdev S 2020 Phys. Rev. X 10 041057
[32] Chen C, Xu X Y, Qi Y and Meng Z Y 2020 Chin. Phys. Lett. 37 047103
[33] Prosko C, Lee S P and Maciejko J 2017 Phys. Rev. B 96 205104
[34] Qi H Y and Zheng W 2024 Phys. Rev. Res. 6 013047
[35] Anderson P W 1967 Phys. Rev. 164 352
[36] Mahan G D 1967 Phys. Rev. 153 882
[37] Roulet B, Gavoret J and Nozières P 1969 Phys. Rev. 178 1072
[38] Nozières P, Roulet B and Gavoret J 1969 Phys. Rev. 178 1084
[39] Nozières P and De Dominicis C T 1969 Phys. Rev. 178 1097
[40] Benjamin D, Abanin D, Abbamonte P and Demler E 2013 Phys. Rev. Lett. 110 137002
[41] Smith A, Knolle J, Kovrizhin D L and Moessner R 2017 Phys. Rev. Lett. 118 266601
[42] Brenes M, Dalmonte M, Heyl M and Scardicchio A 2018 Phys. Rev. Lett. 120 030601
[43] Smith A, Knolle J, Moessner R and Kovrizhin D L 2018 Phys. Rev. B 97 245137
[44] Yarloo H, Mohseni-Rajaee M and Langari A 2019 Phys. Rev. B 99 054403
[45] Yao Z, Liu C, Zhang P and Zhai H 2020 Phys. Rev. B 102 104302
[46] Papaefstathiou I, Smith A and Knolle J 2020 Phys. Rev. B 102 165132
[1] A family of quantum von Neumann architecture
Dong-Sheng Wang(王东升). Chin. Phys. B, 2024, 33(8): 080302.
[2] A quantum blind signature scheme based on dense coding for non-entangled states
Ke Xing(邢柯), Ai-Han Yin(殷爱菡), and Yong-Qi Xue(薛勇奇). Chin. Phys. B, 2024, 33(6): 060309.
[3] Design of a novel hybrid quantum deep neural network in INEQR images classification
Shuang Wang(王爽), Ke-Han Wang(王柯涵), Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Hong-Yang Ma(马鸿洋), and Shuai Guo(郭帅). Chin. Phys. B, 2024, 33(6): 060310.
[4] Interplay between topology and localization on superconducting circuits
Xin Guan(关欣), Bingyan Huo(霍炳燕), and Gang Chen(陈刚). Chin. Phys. B, 2024, 33(6): 060311.
[5] Quafu-RL: The cloud quantum computers based quantum reinforcement learning
Yu-Xin Jin(靳羽欣), Hong-Ze Xu(许宏泽), Zheng-An Wang(王正安), Wei-Feng Zhuang(庄伟峰), Kai-Xuan Huang(黄凯旋), Yun-Hao Shi(时运豪), Wei-Guo Ma(马卫国), Tian-Ming Li(李天铭), Chi-Tong Chen(陈驰通), Kai Xu(许凯), Yu-Long Feng(冯玉龙), Pei Liu(刘培), Mo Chen(陈墨), Shang-Shu Li(李尚书), Zhi-Peng Yang(杨智鹏), Chen Qian(钱辰), Yun-Heng Ma(马运恒), Xiao Xiao(肖骁), Peng Qian(钱鹏), Yanwu Gu(顾炎武), Xu-Dan Chai(柴绪丹), Ya-Nan Pu(普亚南), Yi-Peng Zhang(张翼鹏), Shi-Jie Wei(魏世杰), Jin-Feng Zeng(曾进峰), Hang Li(李行), Gui-Lu Long(龙桂鲁), Yirong Jin(金贻荣), Haifeng Yu(于海峰), Heng Fan(范桁), Dong E. Liu(刘东), and Meng-Jun Hu(胡孟军). Chin. Phys. B, 2024, 33(5): 050301.
[6] Quafu-Qcover: Explore combinatorial optimization problems on cloud-based quantum computers
Hong-Ze Xu(许宏泽), Wei-Feng Zhuang(庄伟峰), Zheng-An Wang(王正安), Kai-Xuan Huang(黄凯旋), Yun-Hao Shi(时运豪), Wei-Guo Ma(马卫国), Tian-Ming Li(李天铭), Chi-Tong Chen(陈驰通), Kai Xu(许凯), Yu-Long Feng(冯玉龙), Pei Liu(刘培), Mo Chen(陈墨), Shang-Shu Li(李尚书), Zhi-Peng Yang(杨智鹏), Chen Qian(钱辰), Yu-Xin Jin(靳羽欣), Yun-Heng Ma(马运恒), Xiao Xiao(肖骁), Peng Qian(钱鹏), Yanwu Gu(顾炎武), Xu-Dan Chai(柴绪丹), Ya-Nan Pu(普亚南), Yi-Peng Zhang(张翼鹏), Shi-Jie Wei(魏世杰), Jin-Feng Zeng(增进峰), Hang Li(李行), Gui-Lu Long(龙桂鲁), Yirong Jin(金贻荣), Haifeng Yu(于海峰), Heng Fan(范桁), Dong E. Liu(刘东), and Meng-Jun Hu(胡孟军). Chin. Phys. B, 2024, 33(5): 050302.
[7] An anti-aliasing filtering of quantum images in spatial domain using a pyramid structure
Kai Wu(吴凯), Rigui Zhou(周日贵), and Jia Luo(罗佳). Chin. Phys. B, 2024, 33(5): 050305.
[8] Quantum generative adversarial networks based on a readout error mitigation method with fault tolerant mechanism
Run-Sheng Zhao(赵润盛), Hong-Yang Ma(马鸿洋), Tao Cheng(程涛), Shuang Wang(王爽), and Xing-Kui Fan(范兴奎). Chin. Phys. B, 2024, 33(4): 040304.
[9] Double quantum images encryption scheme based on chaotic system
She-Xiang Jiang(蒋社想), Yang Li(李杨), Jin Shi(石锦), and Ru Zhang(张茹). Chin. Phys. B, 2024, 33(4): 040306.
[10] Integer multiple quantum image scaling based on NEQR and bicubic interpolation
Shuo Cai(蔡硕), Ri-Gui Zhou(周日贵), Jia Luo(罗佳), and Si-Zhe Chen(陈思哲). Chin. Phys. B, 2024, 33(4): 040302.
[11] Analysis of learnability of a novel hybrid quantum—classical convolutional neural network in image classification
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Rui Wang(王睿), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2024, 33(4): 040303.
[12] Protected simultaneous quantum remote state preparation scheme by weak and reversal measurements in noisy environments
Mandal Manoj Kumar, Choudhury Binayak S., and Samanta Soumen. Chin. Phys. B, 2024, 33(2): 020309.
[13] Simulation of optimal work extraction for quantum systems with work storage
Peng-Fei Song(宋鹏飞) and Dan-Bo Zhang(张旦波). Chin. Phys. B, 2024, 33(2): 020312.
[14] Proposal for sequential Stern-Gerlach experiment with programmable quantum processors
Meng-Jun Hu(胡孟军), Haixing Miao(缪海兴), and Yong-Sheng Zhang(张永生). Chin. Phys. B, 2024, 33(2): 020303.
[15] Quantum algorithm for minimum dominating set problem with circuit design
Haoying Zhang(张皓颖), Shaoxuan Wang(王绍轩), Xinjian Liu(刘新建), Yingtong Shen(沈颖童), and Yukun Wang(王玉坤). Chin. Phys. B, 2024, 33(2): 020310.
No Suggested Reading articles found!