Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 117803    DOI: 10.1088/1674-1056/ad78dc
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Dancing bubble sonoluminescence in phosphoric acid solution

Dexin Wang(王德鑫)1, Qinghim(清河美)2, Wurihan Bao(包乌日汗)1, Haiying Han(韩海英)1, and Naranmandula(那仁满都拉)1,†
1 College of Physics and Electronics, Inner Mongolia Minzu University, Tongliao 028043, China;
2 Tongliao City No. 4 Middle School South Campus, Tongliao 028000, China
Abstract  Sonoluminescence is more distinctly observed in phosphoric and sulfuric acid, which exhibit high viscosity and lower vapor pressures relative to water. Within an 85-wt% phosphoric acid solution saturated with argon (Ar), variations in the light-emitting regimes of bubbles were noted to correspond with increments in the driving acoustic intensity. Specifically, the bubbles were observed to perform a dance-like motion 2 cm below the multi-bubble sonoluminescence (MBSL) cluster, traversing a 25-mm$^2$ grid during the camera exposure period. Spectral analysis conducted at the beginning of the experiment showed a gradual attenuation of CN (B$^2\Sigma$-X$^2\Sigma$) emission concurrent with a strengthening of Ar (4p-4s) atom emission lines. The application of a theoretical temperature model to the spectral data revealed that the internal temperature of the bubbles escalates swiftly upon their implosion. This study is instrumental in advancing the comprehension of the underlying mechanisms of sonoluminescence and in the formulation of a dynamic model for the behavior of the bubbles.
Keywords:  sonoluminescence      spectrum      phosphoric acid solution      noble gas  
Received:  14 June 2024      Revised:  30 August 2024      Accepted manuscript online:  10 September 2024
PACS:  78.60.Mq (Sonoluminescence, triboluminescence)  
  43.25.+y (Nonlinear acoustics)  
Fund: Project supported by the Scientific Research Project of Higher Education in the Inner Mongolia Autonomous Region, China (Grant No. NJZY23100) and the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2024FX30), and the 14th Five Year Plan Project for Education Science in Inner Mongolia Autonomous Region, China (Grant No. NGJGH2023205).
Corresponding Authors:  Naranmandula     E-mail:  nrmdlbf@126.com

Cite this article: 

Dexin Wang(王德鑫), Qinghim(清河美), Wurihan Bao(包乌日汗), Haiying Han(韩海英), and Naranmandula(那仁满都拉) Dancing bubble sonoluminescence in phosphoric acid solution 2024 Chin. Phys. B 33 117803

[1] Gaitan D F, Crum L A, Church C C and Roy R 1992 J. Acoust. Soc. Am. 91 3166
[2] Walton A J and Reynolds G T 1984 Adv. Phys. 33 595
[3] Marinesco N and Trillat J J 1933 C. R. Acad. Sci. 196 858
[4] Frenzel H and Schultes H 1934 Z. Phys. Chem. 27 421
[5] Taylor K J and Jarman P D 1970 Aust. J. Phys 23 319
[6] Didenko Y T and Suslick K S 2000 Phys. Rev. Lett. 84 777
[7] Chakravarty A, Georghiou T, Phillipson T E and Walton A J 2004 Phys. Rev. E 69 066317
[8] Flannigan D J and Suslick K S 2005 Nature 434 52
[9] Chen W Z, Huang W, Liang Y, Gao X X and Cui W C 2008 Phys. Rev. E 78 035301
[10] An Y and Li C 2009 Phys. Rev. E 80 046320
[11] Hopkins S D, Putterman S J, Kappus B A, Suslick K S and Camara C G 2005 Phys. Rev. Lett. 95 254301
[12] Toegel R, Gompf B, Pecha R and Detlef L 2000 Phys. Rev. Lett. 85 3165
[13] Didenko Y T, Rd M N W and Suslick K S 2000 Nature 407 877
[14] Hilgenfeldt S, Grossmann S and Lohse D 1999b Phys. Fluids 11 1318
[15] Holzfuss J, Ruggeberg M and Mettin R 1998 Physics 81 1961
[16] Hiller R, Weninger K, Putterman S and Barber B P 1994 Science 266 248
[17] Eddingsaas N C and Suslick K S 2007 J. Am. Chem. Soc. 129 3838
[18] Xu J F, Chen W Z and Liang Y 2007 Chin. Sci. Bull. 52 1237
[19] Flynn H G 1964 Physical Acoustics (New York: W. P. Mason) p. 57
[20] Troia A, Madonna D and Spagnolo R 2006 Ultrason. Sonochem. 13 287
[21] David J F and Suslick K 2007 Phys. Rev. Lett. 99 134301
[22] Xu H X, Glumac N G and Suslick K S 2010 Angew. Chem. Int. Ed. 49 1079
[23] Xu H X, Eddingsaas N C and Suslick K S 2009 J. Am. Chem. Soc. 131 6060
[24] Suslick K S and Flannigan D J 2008 Annu. Rev. Phys. Chem. 59 659
[25] Sadighibonabi R, Mirheydari M, Rezaee N and Ebrahimi H 2011 Phys. Rev. E 84 026301
[26] Rossell J M, Dellavale D and Bonetto F J 2015 Ultrason. Sonochem. 22 59
[27] Thiemann A, Frank H, Carlos C and Mettin R 2017 Ultrason. Sonochem. 34 663
[28] Dellavale D, Rechiman L, Rossello J and Bonetto F 2012 Phys. Rev. E 86 016320
[29] Sadighibonabi R, Rezaee N and Galavan Z 2009 J. Acoust. Soc. Am. 126 2266
[30] Sadighibonabi R, Mirheydari M, Ebrahimi H, Rezaee N and Nikzad L 2011 Chin. Phys. B 20 252
[31] Liang J F, Xiong D F, An Y and Chen W Z 2022 Chin. Phys. B 31 117802
[32] Al Bishtawi B, Mustapha K B and Scribano G 2024 Phys. Fluids 36 043336
[33] Fabian D and Schenke S 2023 Phys. Fluids 35 012114
[34] Xu X Y, Jiang J K, Chen W Q, et al. 2022 Chin. Phys. B 31 068503
[35] Kramida A, Ralchenko Yu, Reade J, and NIST ASD Team. NIST Atomic Spectra Database (ver. 5.11) National Institute of Standards and Technology, Gaithersburg, MD. https://physics.nist.gov/PhysRefData/ASD/lines-form.html
[36] Shen Y, Zhang L, Wu Y, et al. 2021 Ultrason. Sonochem. 73 105535
[1] Interference of harmonics emitted by different tunneling momentum channels in laser fields
Ling-Yu Zhang(张玲玉), Zhuo-Xuan Xie(谢卓璇), Can Wang(王灿), Xin-Lei Ge(葛鑫磊), and Jing Guo(郭静). Chin. Phys. B, 2024, 33(9): 093201.
[2] Spectral characteristics of laser-plasma instabilities with a broadband laser
Guo-Xiao Xu(许国潇), Ning Kang(康宁), An-Le Lei(雷安乐), Hui-Ya Liu(刘会亚), Yao Zhao(赵耀), Shen-Lei Zhou(周申蕾), Hong-Hai An(安红海), Jun Xiong(熊俊), Rui-Rong Wang(王瑞荣), Zhi-Yong Xie(谢志勇), Xi-Chen Zhou(周熙晨), Zhi-Heng Fang(方智恒), and Wei Wang(王伟). Chin. Phys. B, 2024, 33(8): 085204.
[3] Engineering the spectra of photon triplets generated from micro/nanofiber
Chuan Qu(瞿川), Dongqin Guo(郭东琴), Xiaoxiao Li(李笑笑), Zhenqi Liu(刘振旗), Yi Zhao(赵义), Shenghai Zhang(张胜海), and Zhengtong Wei(卫正统). Chin. Phys. B, 2024, 33(3): 034208.
[4] Decoupling of temporal/spatial broadening effects in Doppler wind LiDAR by 2D spectral analysis
Zhen Liu(刘珍), Yun-Peng Zhang(张云鹏), Xiao-Peng Zhu(竹孝鹏), Ji-Qiao Liu(刘继桥), De-Cang Bi(毕德仓), and Wei-Biao Chen(陈卫标). Chin. Phys. B, 2024, 33(3): 034214.
[5] Floquet spectrum and universal dynamics of a periodically driven two-atom system
Wenzhu Xie(谢文柱), Zhengqiang Zhou(周正强), Xuan Li(李轩), Simiao Cui(崔思淼), and Mingyuan Sun(孙明远). Chin. Phys. B, 2024, 33(2): 026702.
[6] Detection accuracy of target accelerations based on vortex electromagnetic wave in keyhole space
Kai Guo(郭凯), Shuang Lei(雷爽), Yi Lei(雷艺), Hong-Ping Zhou(周红平), and Zhong-Yi Guo(郭忠义). Chin. Phys. B, 2024, 33(2): 020603.
[7] Spin fluctuations and orbital-selective superconductivity in Ba2CuO4-y: A FLEX study
Pei-Jun Zheng(郑裴俊), Ya-Min Quan(全亚民), and Liang-Jian Zou(邹良剑). Chin. Phys. B, 2024, 33(12): 127401.
[8] High-order harmonic generation of ZnO crystals in chirped and static electric fields
Ling-Yu Zhang(张玲玉), Yong-Lin He(何永林), Zhuo-Xuan Xie(谢卓璇), Fang-Yan Gao(高芳艳), Qing-Yun Xu(徐清芸), Xin-Lei Ge(葛鑫磊), Xiang-Yi Luo(罗香怡), and Jing Guo(郭静). Chin. Phys. B, 2024, 33(1): 013102.
[9] Existence of hidden attractors in nonlinear hydro-turbine governing systems and its stability analysis
Peng-Chong Zhao(赵鹏翀), Hao-Juan Wei(卫皓娟), Zhen-Kun Xu(徐振坤), Di-Yi Chen(陈帝伊), Bei-Bei Xu(许贝贝), and Yu-Meng Wang(王雨萌). Chin. Phys. B, 2023, 32(9): 090503.
[10] Saturated absorption spectrum of cesium micrometric-thin cell with suppressed crossover spectral lines
Junlong Han(韩俊龙), Bowen Wang(王博闻), Junhe Zheng(郑俊鹤), Shuyuan Chen(陈书源),Wei Xiao(肖伟), Teng Wu(吴腾), Hong Guo(郭弘), and Xiang Peng(彭翔). Chin. Phys. B, 2023, 32(7): 073201.
[11] Optical encryption scheme based on spread spectrum ghost imaging
Jin-Fen Liu(刘进芬), Yue Dong(董玥), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(7): 074202.
[12] High harmonic generation in crystal SiO2 by sub-10-fs laser pulses
Shuai Wang(王帅), Jiawei Guo(郭嘉为), Xinkui He(贺新奎), Yueying Liang(梁玥瑛), Baichuan Xie(谢百川), Shiyang Zhong(钟诗阳), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(6): 063301.
[13] Atom-based power-frequency electric field measurement using the radio-frequency-modulated Rydberg spectroscopy
Weixin Liu(刘伟新), Linjie Zhang(张临杰), and Tao Wang(汪涛). Chin. Phys. B, 2023, 32(5): 053203.
[14] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[15] Local density of optical states calculated by the mode spectrum in stratified media
Ting Fu(傅廷), Jingxuan Chen(陈静瑄), Xueyou Wang(王学友), Yingqiu Dai(戴迎秋), Xuyan Zhou(周旭彦), Yufei Wang(王宇飞), Mingjin Wang(王明金), and Wanhua Zheng(郑婉华). Chin. Phys. B, 2023, 32(4): 040204.
No Suggested Reading articles found!