|
|
Saturated absorption spectrum of cesium micrometric-thin cell with suppressed crossover spectral lines |
Junlong Han(韩俊龙)1, Bowen Wang(王博闻)1, Junhe Zheng(郑俊鹤)1, Shuyuan Chen(陈书源)1, Wei Xiao(肖伟)1, Teng Wu(吴腾)1,2, Hong Guo(郭弘)1,2, and Xiang Peng(彭翔)1,2,† |
1 School of Electronics, Peking University, Beijing 100871, China; 2 Center for Quantum Information Technology, Peking University, Beijing 100871, China |
|
|
Abstract Micrometric-thin cells (MCs) with alkali vapor atoms have been valuable for research and applications of hyperfine Zeeman splitting and atomic magnetometers under strong magnetic fields. We theoretically and experimentally study the saturated absorption spectra using a 100-μ cesium MC, where the pump and probe beams are linearly polarized with mutually perpendicular polarizations, and the magnetic field is along the pump beam. Because of the distinctive thin chamber of the MC, crossover spectral lines in saturated absorption spectra are largely suppressed leading to clear splittings of hyperfine Zeeman transitions in experiments, and the effect of spatial magnetic field gradient is expected to be reduced. A calculation method is proposed to achieve good agreements between theoretical calculations and experimental results. This method successfully explains the suppression of crossover lines in MCs, as well as the effects of magnetic field direction, propagation and polarization directions of the pump/probe beam on saturated absorption spectrum. The saturated absorption spectrum with suppressed crossover lines is used for laser frequency stabilization, which may provide the potential value of MCs for high spatial resolution strong-field magnetometry with high sensitivity.
|
Received: 20 January 2023
Revised: 21 March 2023
Accepted manuscript online: 28 March 2023
|
PACS:
|
32.10.Fn
|
(Fine and hyperfine structure)
|
|
32.30.-r
|
(Atomic spectra?)
|
|
32.60.+i
|
(Zeeman and Stark effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61571018 and 61531003). |
Corresponding Authors:
Xiang Peng
E-mail: xiangpeng@pku.edu.cn
|
Cite this article:
Junlong Han(韩俊龙), Bowen Wang(王博闻), Junhe Zheng(郑俊鹤), Shuyuan Chen(陈书源),Wei Xiao(肖伟), Teng Wu(吴腾), Hong Guo(郭弘), and Xiang Peng(彭翔) Saturated absorption spectrum of cesium micrometric-thin cell with suppressed crossover spectral lines 2023 Chin. Phys. B 32 073201
|
[1] Tonoyan A 2016 Study of optical and magneto-optical processes in cesium, rubidium and potassium micro- and nano-metric thin atomic layers (Ph.D. Dissertation) (Dijon: Université de Bourgogne) [2] Sargsyan A, Pashayan-Leroy Y, Leroy C and Sarkisyan D 2016 J. Phys. B: At. Mol. Opt. Phys. 49 075001 [3] Peyrot T, Šibalić N, Sortais Y R P, Browaeys A, Sargsyan A, Sarkisyan D, Hughes I G and Adams C S 2019 Phys. Rev. A 100 022503 [4] Peyrot T, Sortais Y R P, Browaeys A, Sargsyan A, Sarkisyan D, Keaveney J, Hughes I G and Adams C S 2018 Phys. Rev. Lett. 120 243401 [5] Sargsyan A, Tonoyan A, Hakhumyan G, Leroy C, Pashayan L Y and Sarkisyan D 2015 Europhys. Lett. 110 23001 [6] Sargsyan A, Sarkisyan D, Papoyan A, Pashayan L Y, Moroshkin P, Weis A, Khanbekyan A, Mariotti E and Moi L 2008 Laser Phys. 18 749 [7] Kübler H, Shaffer J P, Baluktsian T, Löw R and Pfau T 2010 Nat. Photon. 4 112 [8] Todorov P and Bloch D 2017 J. Chem. Phys. 147 194202 [9] Christaller F, Mäusezahl M, Moumtsilis F, Belz A, Kübler H, Alaeian H, Adams C S, Löw R and Pfau T 2022 Phys. Rev. Lett. 128 173401 [10] Todorov P, Vartanyan T, Andreeva C, Sarkisyan D, Pichler G and Cartaleva S 2020 Opt. Quantum Electron. 52 1 [11] Keaveney J, Hughes I G, Sargsyan A, Sarkisyan D and Adams C S 2012 Phys. Rev. Lett. 109 233001 [12] Fukuda K, Kinoshita M, Hasegawa A, Tachikawa M and Hosokawa M 2003 Journal of the National Institute of Information and Communications Technology 50 95 [13] Sargsyan A, Momier R, Leroy C and Sarkisyan D 2022 Laser Phys. 32 105701 [14] Keaveney J, Sargsyan A, Sarkisyan D, Papoyan A and Adams C S 2014 J. Phys. B: At. Mol. Opt. Phys. 47 075002 [15] Sarkisyan D, Hakhumyan G, Sargsyan A, Mirzoyan R, Leroy C and Pashayan L Y 2011 2011 Proceedings of 16th International School on Quantum Electronics: Laser Physics and Applications, January 17, 2011, Nessebar, Bulgaria, p. 77470C [16] Whittaker K A, Keaveney J, Hughes I G, Sargsyan A, Sarkisyan D and Adams C S 2014 Phys. Rev. Lett. 112 253201 [17] Fan H, Kumar S, Sedlacek J, Kübler H, Karimkashi S and Shaffer J P 2015 J. Phys. B: At. Mol. Opt. Phys. 48 202001 [18] Talker E, Zektzer R, Barash Y, Mazurski N and Levy U 2020 J. Vac. Sci. Technol. B 38 050601 [19] Sargsyan A, Amiryan A, Pashayan L Y, Leroy C, Papoyan A and Sarkisyan D 2019 arXiv:1906.06252 [20] Sargsyan A, Tonoyan A, Mirzoyan R, Sarkisyan D, Wojciechowski A M, Stabrawa A and Gawlik W 2014 Opt. Lett. 39 2270 [21] Biancalana V, Cartaleva S, Dancheva Y, Gosh P N, Mariotti E, Mitra S, Moi L, Petrov N, Ray B, Sarkisyan D and Slavov D 2009 Acta Phys. Pol. 116 495 [22] Sargsyan A, Mirzoyan R and Sarkisyan D 2012 Opt. Spectrosc. 113 456 [23] Školnik G, Vujičić N and Ban T 2009 Opt. Commun. 282 1326 [24] Klinger E, Azizbekyan H, Sargsyan A, Leroy C, Sarkisyan D and Papoyan A 2020 Appl. Opt. 59 2231 [25] Sargsyan A, Amiryan A, Vartanyan T A and Sarkisyan D 2016 Opt. Spectrosc. 121 790 [26] Oelsner G, Schultze V, IJsselsteijn R, Wittkämper F and Stolz R 2019 Phys. Rev. A 99 013420 [27] Breit G and Rabi I I1931 Phys. Rev. 38 2082 [28] Moon G and Noh H R 2007 J. Korean Phys. Soc. 50 1037 [29] Yang D H and Wang Y Q 1989 Opt. Commun. 74 54 [30] Nikogosyan G V, Sarkisyan D G and Malakyan Yu P 2004 J. Opt. Technol. 71 602 [31] Tremblay P, Michaud A, Levesque M, Thériault S, Breton M, Beaubien J and Cyr N 1990 Phys. Rev. A 42 2766 [32] Sargsyan A, Tonoyan A, Hakhumyan G, Papoyan A, Mariotti E and Sarkisyan D 2014 Laser Phys. Lett. 11 055701 [33] Staerkind H, Jensen K, Müller J H, Boer V O, Petersen E T and Polzik E S 2022 arXiv:2208.00077 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|