Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 073201    DOI: 10.1088/1674-1056/acc802
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Saturated absorption spectrum of cesium micrometric-thin cell with suppressed crossover spectral lines

Junlong Han(韩俊龙)1, Bowen Wang(王博闻)1, Junhe Zheng(郑俊鹤)1, Shuyuan Chen(陈书源)1, Wei Xiao(肖伟)1, Teng Wu(吴腾)1,2, Hong Guo(郭弘)1,2, and Xiang Peng(彭翔)1,2,†
1 School of Electronics, Peking University, Beijing 100871, China;
2 Center for Quantum Information Technology, Peking University, Beijing 100871, China
Abstract  Micrometric-thin cells (MCs) with alkali vapor atoms have been valuable for research and applications of hyperfine Zeeman splitting and atomic magnetometers under strong magnetic fields. We theoretically and experimentally study the saturated absorption spectra using a 100-μ cesium MC, where the pump and probe beams are linearly polarized with mutually perpendicular polarizations, and the magnetic field is along the pump beam. Because of the distinctive thin chamber of the MC, crossover spectral lines in saturated absorption spectra are largely suppressed leading to clear splittings of hyperfine Zeeman transitions in experiments, and the effect of spatial magnetic field gradient is expected to be reduced. A calculation method is proposed to achieve good agreements between theoretical calculations and experimental results. This method successfully explains the suppression of crossover lines in MCs, as well as the effects of magnetic field direction, propagation and polarization directions of the pump/probe beam on saturated absorption spectrum. The saturated absorption spectrum with suppressed crossover lines is used for laser frequency stabilization, which may provide the potential value of MCs for high spatial resolution strong-field magnetometry with high sensitivity.
Keywords:  micrometric-thin cells      saturated absorption spectrum      hyperfine Zeeman splitting      crossover spectral lines      laser frequency stabilization  
Received:  20 January 2023      Revised:  21 March 2023      Accepted manuscript online:  28 March 2023
PACS:  32.10.Fn (Fine and hyperfine structure)  
  32.30.-r (Atomic spectra?)  
  32.60.+i (Zeeman and Stark effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61571018 and 61531003).
Corresponding Authors:  Xiang Peng     E-mail:  xiangpeng@pku.edu.cn

Cite this article: 

Junlong Han(韩俊龙), Bowen Wang(王博闻), Junhe Zheng(郑俊鹤), Shuyuan Chen(陈书源),Wei Xiao(肖伟), Teng Wu(吴腾), Hong Guo(郭弘), and Xiang Peng(彭翔) Saturated absorption spectrum of cesium micrometric-thin cell with suppressed crossover spectral lines 2023 Chin. Phys. B 32 073201

[1] Tonoyan A 2016 Study of optical and magneto-optical processes in cesium, rubidium and potassium micro- and nano-metric thin atomic layers (Ph.D. Dissertation) (Dijon: Université de Bourgogne)
[2] Sargsyan A, Pashayan-Leroy Y, Leroy C and Sarkisyan D 2016 J. Phys. B: At. Mol. Opt. Phys. 49 075001
[3] Peyrot T, Šibalić N, Sortais Y R P, Browaeys A, Sargsyan A, Sarkisyan D, Hughes I G and Adams C S 2019 Phys. Rev. A 100 022503
[4] Peyrot T, Sortais Y R P, Browaeys A, Sargsyan A, Sarkisyan D, Keaveney J, Hughes I G and Adams C S 2018 Phys. Rev. Lett. 120 243401
[5] Sargsyan A, Tonoyan A, Hakhumyan G, Leroy C, Pashayan L Y and Sarkisyan D 2015 Europhys. Lett. 110 23001
[6] Sargsyan A, Sarkisyan D, Papoyan A, Pashayan L Y, Moroshkin P, Weis A, Khanbekyan A, Mariotti E and Moi L 2008 Laser Phys. 18 749
[7] Kübler H, Shaffer J P, Baluktsian T, Löw R and Pfau T 2010 Nat. Photon. 4 112
[8] Todorov P and Bloch D 2017 J. Chem. Phys. 147 194202
[9] Christaller F, Mäusezahl M, Moumtsilis F, Belz A, Kübler H, Alaeian H, Adams C S, Löw R and Pfau T 2022 Phys. Rev. Lett. 128 173401
[10] Todorov P, Vartanyan T, Andreeva C, Sarkisyan D, Pichler G and Cartaleva S 2020 Opt. Quantum Electron. 52 1
[11] Keaveney J, Hughes I G, Sargsyan A, Sarkisyan D and Adams C S 2012 Phys. Rev. Lett. 109 233001
[12] Fukuda K, Kinoshita M, Hasegawa A, Tachikawa M and Hosokawa M 2003 Journal of the National Institute of Information and Communications Technology 50 95
[13] Sargsyan A, Momier R, Leroy C and Sarkisyan D 2022 Laser Phys. 32 105701
[14] Keaveney J, Sargsyan A, Sarkisyan D, Papoyan A and Adams C S 2014 J. Phys. B: At. Mol. Opt. Phys. 47 075002
[15] Sarkisyan D, Hakhumyan G, Sargsyan A, Mirzoyan R, Leroy C and Pashayan L Y 2011 2011 Proceedings of 16th International School on Quantum Electronics: Laser Physics and Applications, January 17, 2011, Nessebar, Bulgaria, p. 77470C
[16] Whittaker K A, Keaveney J, Hughes I G, Sargsyan A, Sarkisyan D and Adams C S 2014 Phys. Rev. Lett. 112 253201
[17] Fan H, Kumar S, Sedlacek J, Kübler H, Karimkashi S and Shaffer J P 2015 J. Phys. B: At. Mol. Opt. Phys. 48 202001
[18] Talker E, Zektzer R, Barash Y, Mazurski N and Levy U 2020 J. Vac. Sci. Technol. B 38 050601
[19] Sargsyan A, Amiryan A, Pashayan L Y, Leroy C, Papoyan A and Sarkisyan D 2019 arXiv:1906.06252
[20] Sargsyan A, Tonoyan A, Mirzoyan R, Sarkisyan D, Wojciechowski A M, Stabrawa A and Gawlik W 2014 Opt. Lett. 39 2270
[21] Biancalana V, Cartaleva S, Dancheva Y, Gosh P N, Mariotti E, Mitra S, Moi L, Petrov N, Ray B, Sarkisyan D and Slavov D 2009 Acta Phys. Pol. 116 495
[22] Sargsyan A, Mirzoyan R and Sarkisyan D 2012 Opt. Spectrosc. 113 456
[23] Školnik G, Vujičić N and Ban T 2009 Opt. Commun. 282 1326
[24] Klinger E, Azizbekyan H, Sargsyan A, Leroy C, Sarkisyan D and Papoyan A 2020 Appl. Opt. 59 2231
[25] Sargsyan A, Amiryan A, Vartanyan T A and Sarkisyan D 2016 Opt. Spectrosc. 121 790
[26] Oelsner G, Schultze V, IJsselsteijn R, Wittkämper F and Stolz R 2019 Phys. Rev. A 99 013420
[27] Breit G and Rabi I I1931 Phys. Rev. 38 2082
[28] Moon G and Noh H R 2007 J. Korean Phys. Soc. 50 1037
[29] Yang D H and Wang Y Q 1989 Opt. Commun. 74 54
[30] Nikogosyan G V, Sarkisyan D G and Malakyan Yu P 2004 J. Opt. Technol. 71 602
[31] Tremblay P, Michaud A, Levesque M, Thériault S, Breton M, Beaubien J and Cyr N 1990 Phys. Rev. A 42 2766
[32] Sargsyan A, Tonoyan A, Hakhumyan G, Papoyan A, Mariotti E and Sarkisyan D 2014 Laser Phys. Lett. 11 055701
[33] Staerkind H, Jensen K, Müller J H, Boer V O, Petersen E T and Polzik E S 2022 arXiv:2208.00077
[1] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[2] Spectral filtering of dual lasers with a high-finesse length-tunable cavity for rubidium atom Rydberg excitation
Yang-Yang Liu(刘杨洋), Zhuo Fu(付卓), Peng Xu(许鹏), Xiao-Dong He(何晓东), Jin Wang(王谨), and Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2021, 30(7): 074203.
[3] Frequency stabilization of a 399-nm laser by modulation transfer spectroscopy in an ytterbium hollow cathode lamp
Wang Wen-Li(王文丽), Ye Jie(叶捷), Jiang Hai-Ling(蒋海灵), Bi Zhi-Yi(毕志毅), Ma Long-Sheng(马龙生), and Xu Xin-Ye(徐信业). Chin. Phys. B, 2011, 20(1): 013201.
[4] Study of a low power dissipation, miniature laser-pumped rubidium frequency standard
Liu Guo-Bin(刘国宾), Zhao Feng(赵峰), and Gu Si-Hong(顾思洪). Chin. Phys. B, 2009, 18(9): 3839-3843.
[5] Vibration insensitive optical ring cavity
Miao Jin(缪瑾), Jiang Yan-Yi(蒋燕义), Fang Su(方苏), Bi Zhi-Yi(毕志毅), and Ma Long-Sheng(马龙生). Chin. Phys. B, 2009, 18(6): 2334-2339.
[6] Two-hertz-linewidth Nd:YAG lasers at 1064nm stabilized to vertically mounted ultra-stable cavities
Jiang Yan-Yi(蒋燕义), Bi Zhi-Yi(毕志毅), Xu Xin-Ye(徐信业), and Ma Long-Sheng(马龙生) . Chin. Phys. B, 2008, 17(6): 2152-2155.
[7] Decreased vibrational susceptibility of Fabry--Perot cavities via designs of geometry and structural support
Yang Tao(杨涛), Li Wen-Bo(李文博), Zang Er-Jun(臧二军), and Chen Li-Sheng(陈李生). Chin. Phys. B, 2007, 16(5): 1374-1384.
[8] An abnormal phenomenon in the saturated absorption spectrum of 87Rb
He Ling-Xiang (贺凌翔), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2003, 12(11): 1225-1228.
No Suggested Reading articles found!