|
|
Spin fluctuations and orbital-selective superconductivity in Ba2CuO4-y: A FLEX study |
Pei-Jun Zheng(郑裴俊)1,2, Ya-Min Quan(全亚民)1, and Liang-Jian Zou(邹良剑)1,2,† |
1 Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; 2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Recently discovered Ba$_2$CuO$_{4-y}$ provides new perspectives to the study of high-temperature superconductivity. Whereas, little is known about the spin dynamics of this material. In this work, we employ the fluctuation exchange (FLEX) approximation within the framework of spin-fluctuation mediated superconductivity to examine the behavior of the spin fluctuations of a two-orbital Hubbard model for Ba$_2$CuO$_{4-y}$. Our calculations reveal an extraordinary spin resonance mode coupled to the superconducting state in the hole-underdoped regime. Furthermore, we confirm that the coupling between the electrons and this resonance mode can lead to a dip-like feature in the electronic spectrum as a feedback effect. In the hole-overdoped regime, by incorporating self energy into our calculations, we obtain orbital-dependent renormalizations and show how these self-energy effects can lead to the detailed gap structures and the orbital-selective superconductivity, which could not be obtained in a previous study using random phase approximation (RPA). This research may shed new light on searching for unconventional superconductors with higher transition temperatures.
|
Received: 08 September 2024
Revised: 28 October 2024
Accepted manuscript online: 30 October 2024
|
PACS:
|
74.72.-h
|
(Cuprate superconductors)
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
75.30.Kz
|
(Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))
|
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774350, 11974354, and 11534010). |
Corresponding Authors:
Liang-Jian Zou
E-mail: zou@theory.issp.ac.cn
|
Cite this article:
Pei-Jun Zheng(郑裴俊), Ya-Min Quan(全亚民), and Liang-Jian Zou(邹良剑) Spin fluctuations and orbital-selective superconductivity in Ba2CuO4-y: A FLEX study 2024 Chin. Phys. B 33 127401
|
[1] Li W M, Zhao J F, Cao L P, Hu Z, Huang Q Z, Wang X C, Liu Y, Zhao G Q, Zhang J, Liu Q Q, Yu R Z, Long Y W, Wu H, Lin H J, Chen C T, Li Z, Gong Z Z, Guguchia Z, Kim J S, Stewart G R, Uemura Y J, Uchida S and Jin C Q 2019 Proc. Natl. Acad. Sci. USA 116 12156 [2] Li W, Zhao J and Jin C 2023 Phys. C 615 1354373 [3] Scalapino D J 2019 Proc. Natl. Acad. Sci. USA 116 12129 [4] Liu Q Q, Yang H, Qin X M, Yu Y, Yang L X, Li F Y, Yu R C, Jin C Q and Uchida S 2006 Phys. Rev. B 74 100506 [5] Geballe T and Marezio M 2009 Phys. C 469 680 [6] Gauzzi A, Klein Y, Nisula M, Karppinen M, Biswas P K, Saadaoui H, Morenzoni E, Manuel P, Khalyavin D, Marezio M and Geballe T H 2016 Phys. Rev. B 94 180509 [7] Jiang K, Wu X, Hu J and Wang Z 2018 Phys. Rev. Lett. 121 227002 [8] Sakakibara H, Usui H, Kuroki K, Arita R and Aoki H 2010 Phys. Rev. Lett. 105 057003 [9] Maier T A and Scalapino D J 2011 Phys. Rev. B 84 180513 [10] Nakata M, Ogura D, Usui H and Kuroki K 2017 Phys. Rev. B 95 214509 [11] Olés A M, Wohlfeld K and Khaliullin G 2019 Condens. Matter 4 46 [12] Anisimov V, Nekrasov I, Kondakov D, Rice T and Sigrist M 2002 Eur. Phys. J. B 25 191 [13] Yi M, Lu D H, Yu R, Riggs S C, Chu J H, Lv B, Liu Z K, Lu M, Cui Y T, Hashimoto M, Mo S K, Hussain Z, Chu C W, Fisher I R, Si Q and Shen Z X 2013 Phys. Rev. Lett. 110 067003 [14] Yu R and Si Q 2013 Phys. Rev. Lett. 110 146402 [15] Quan Y M, Liu D Y, Lin H Q and Zou L J 2018 J. Magn. Magn. Mater. 456 329 [16] Kasahara S, Shi H J, Hashimoto K, Tonegawa S, Mizukami Y, Shibauchi T, Sugimoto K, Fukuda T, Terashima T, Nevidomskyy A H and Matsuda Y 2012 Nature 486 382 [17] Fernandes R M, Chubukov A V and Schmalian J 2014 Nat. Phys. 10 97 [18] Watson M D, Kim T K, Haghighirad A A, Davies N R, McCollam A, Narayanan A, Blake S F, Chen Y L, Ghannadzadeh S, Schofield A J, Hoesch M, Meingast C, Wolf T and Coldea A I 2015 Phys. Rev. B 91 155106 [19] Zheng X J, Huang Z B, Liu D Y and Zou L J 2015 Phys. Rev. B 92 085109 [20] Lu F, Wang W H, Liu D Y, Wang C Z and Zou L J 2010 J. Phys.: Condens. Matter 22 355603 [21] Zhang Y, Lee J J, Moore R G, Li W, Yi M, Hashimoto M, Lu D H, Devereaux T P, Lee D H and Shen Z X 2016 Phys. Rev. Lett. 117 117001 [22] Xu H C, Niu X H, Xu D F, Jiang J, Yao Q, Chen Q Y, Song Q, AbdelHafiez M, Chareev D A, Vasiliev A N, Wang Q S, Wo H L, Zhao J, Peng R and Feng D L 2016 Phys. Rev. Lett. 117 157003 [23] Sprau P O, Kostin A, Kreisel A, Böhmer A E, Taufour V, Canfield P C, Mukherjee S, Hirschfeld P J, Andersen B M and Davis J C S 2017 Science 357 75 [24] Liu C, Kreisel A, Zhong S, Li Y, Andersen B M, Hirschfeld P and Wang J 2022 Nano Lett. 22 3245 [25] Li Y, Yin Z, Wang X, Tam D W, Abernathy D L, Podlesnyak A, Zhang C, Wang M, Xing L, Jin C, Haule K, Kotliar G, Maier T A and Dai P 2016 Phys. Rev. Lett. 116 247001 [26] Tian L, Liu P, Xu Z, Li Y, Lu Z, Walker H C, Stuhr U, Tan G, Lu X and Dai P 2019 Phys. Rev. B 100 134509 [27] Maier T, Berlijn T and Scalapino D J 2019 Phys. Rev. B 99 224515 [28] Wang Z, Zhou S, Chen W and Zhang F C 2020 Phys. Rev. B 101 180509 [29] Yamazaki K, Ochi M, Ogura D, Kuroki K, Eisaki H, Uchida S and Aoki H 2020 Phys. Rev. Res. 2 033356 [30] Jiang K, Le C, Li Y, Qin S, Wang Z, Zhang F and Hu J 2021 Phys. Rev. B 103 045108 [31] Zegrodnik M, Wójcik P and Spałek J 2021 Phys. Rev. B 103 144511 [32] Klett M, Schwemmer T, Wolf S, Wu X, Riegler D, Dittmaier A, Di Sante D, Li G, Hanke W, Rachel S and Thomale R 2021 Phys. Rev. B 104 L100502 [33] Bai X C, Quan Y M, Lin H Q and Zou L J 2022 Phys. Rev. B 105 184506 [34] Worm P, Kitatani M, Tomczak J M, Si L and Held K 2022 Phys. Rev. B 105 085110 [35] Adhikary P, Gupta M, Chauhan A, Satpathy S, Mukherjee S and Nanda B R K 2024 Phys. Rev. B 109 L020505 [36] Adhikary P, Gupta M, Nanda B R K and Mukherjee S 2024 Phys. Rev. B 109 224503 [37] Björnson K, Kreisel A, Rømer A T and Andersen B M 2021 Phys. Rev. B 103 024508 [38] Bickers N E, Scalapino D J and White S R 1989 Phys. Rev. Lett. 62 961 [39] Bickers N and Scalapino D 1989 Ann. Phys. 193 206 [40] Baym G and Kadanoff L P 1961 Phys. Rev. 124 287 [41] Baym G 1962 Phys. Rev. 127 1391 [42] Takimoto T, Hotta T and Ueda K 2004 Phys. Rev. B 69 104504 [43] Kubo K 2007 Phys. Rev. B 75 224509 [44] Zhang J, Sknepnek R, Fernandes R M and Schmalian J 2009 Phys. Rev. B 79 220502 [45] Zhang J, Sknepnek R and Schmalian J 2010 Phys. Rev. B 82 134527 [46] Nocera A, Wang Y, Patel N D, Alvarez G, Maier T A, Dagotto E and Johnston S 2018 Phys. Rev. B 97 195156 [47] Rademaker L, Alvarez-Suchini G, Nakatsukasa K, Wang Y and Johnston S 2021 Phys. Rev. B 103 144504 [48] Sknepnek R, Samolyuk G, Lee Y b and Schmalian J 2009 Phys. Rev. B 79 054511 [49] Yu S L, Kang J and Li J X 2009 Phys. Rev. B 79 064517 [50] Ikeda H, Arita R and Kuneš J 2010 Phys. Rev. B 82 024508 [51] Witt N, van Loon E G C P, Nomoto T, Arita R and Wehling T O 2021 Phys. Rev. B 103 205148 [52] Vidberg H J and Serene J W 1977 J. Low Temp. Phys. 29 179 [53] Abanov A and Chubukov A V 1999 Phys. Rev. Lett. 83 1652 [54] Richard P, Sato T, Nakayama K, Souma S, Takahashi T, Xu Y M, Chen G F, Luo J L, Wang N L and Ding H 2009 Phys. Rev. Lett. 102 047003 [55] Scalapino D J 2012 Rev. Mod. Phys. 84 1383 [56] Eschrig M 2006 Adv. Phys. 55 47 [57] Song Y, Wang W, S Van Dyke J, Pouse N, Ran S, Yazici D, Schneidewind A, Čermák P, Qiu Y, Maple M B, Morr D K and Dai P 2020 Commun. Phys. 3 98 [58] Eremin I, Morr D K, Chubukov A V, Bennemann K H and Norman M R 2005 Phys. Rev. Lett. 94 147001 [59] Takeuchi L, Yamakawa Y and Kontani H 2018 Phys. Rev. B 98 165143 [60] Hiroshi Kontani Rina Tazai Y Y and Onari S 2021 Adv. Phys. 70 355 [61] Karakuzu S, Johnston S and Maier T A 2021 Phys. Rev. B 104 245109 [62] Ikeda H, Arita R and Kuneš J 2010 Phys. Rev. B 81 054502 [63] Ni Y, Quan Y M, Liu J, Song Y and Zou L J 2021 Phys. Rev. B 103 214510 [64] Yao Z J, Li J X and Wang Z D 2009 New J. Phys. 11 025009 [65] Dai Y M, Miao H, Xing L Y, Wang X C, Wang P S, Xiao H, Qian T, Richard P, Qiu X G, Yu W, Jin C Q, Wang Z, Johnson P D, Homes C C and Ding H 2015 Phys. Rev. X 5 031035 [66] Matsumoto K, Ogura D and Kuroki K 2020 J. Phys. Soc. Jpn. 89 044709 [67] Hirschfeld P J, Korshunov M M and Mazin I I 2011 Rep. Prog. Phys. 74 124508 [68] Chubukov A 2012 Annu. Rev. Condens. Phys. 3 57 [69] Hiroi Z, Takano M, Azuma M and Takeda Y 1993 Nature 364 315 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|