Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 117802    DOI: 10.1088/1674-1056/ad73b4
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Identifying the effect of photo-generated carriers on the phonons in rutile TiO2 through Raman spectroscopy

Zheng Wang(王征), Min Liao(廖敏), Guihua Wang(王桂花), and Meng Zhang(张梦)†
School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
Abstract  Investigating lattice vibrations through Raman spectroscopy is a crucial method for studying crystalline materials. Carriers can interact with lattices and influence lattice vibrations; thus, it is feasible to study the effect of photo-generated carriers on phonons by analyzing changes in the Raman spectra of semiconductors. Rutile is one of the predominant crystalline phases of TiO$_{2}$, which is a widely utilized metal oxide semiconductor. In this work, rutile TiO$_{2}$ is coated on a thinned optical fiber to concentrate ultraviolet light energy within the material, thereby enhancing the generation of carriers and amplifying the changes in the Raman spectra. A Raman detection laser with a wavelength of 532 nm is utilized to collect the Raman spectra of rutile TiO$_{2}$ during irradiation. Using this setup, the impact of photo-generated carriers on the phonons corresponding to Raman vibrational modes is researched. The localization and non-radiative recombination of photo-generated carriers contribute to a reduction in both the frequencies and lifetimes of phonons. This work provides a novel approach to researching the effect of carriers on phonons.
Keywords:  Raman spectroscopy      photo-generated carriers      rutile TiO$_{2}$      phonons  
Received:  27 June 2024      Revised:  06 August 2024      Accepted manuscript online:  27 August 2024
PACS:  78.56.Cd (Photocarrier radiometry)  
  74.25.Kc (Phonons)  
  74.25.nd (Raman and optical spectroscopy)  
  61.82.Fk (Semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52122008, 51978024, and 52370003) and the Science and Technology and Innovation Commission of Shen Zhen Municipality (Grant No. JCYJ20200109105212568).
Corresponding Authors:  Meng Zhang     E-mail:  mengzhang10@buaa.edu.cn

Cite this article: 

Zheng Wang(王征), Min Liao(廖敏), Guihua Wang(王桂花), and Meng Zhang(张梦) Identifying the effect of photo-generated carriers on the phonons in rutile TiO2 through Raman spectroscopy 2024 Chin. Phys. B 33 117802

[1] Zhang X, Tan Q H, Wu J B, Shi W and Tan P H 2016 Nanoscale 8 6435
[2] Hu H T, Flöry T, Stummer V, Pugzlys A, Zeiler M, Xie X H, Zheltikov A and Baltuška A 2024 Light-Sci. Appl. 13 61
[3] Kerdoncuff H, Lassen M and Petersen J C 2019 Opt. Lett. 44 5057
[4] Mondal W R, Evlyukhin E, Howard S A, Paez G J, Paik H, Schlom D G, Piper L F and Lee W C 2021 Phys. Rev. B 103 214107
[5] Kolesnichenko P V, Tollerud J O and Davis J A 2019 APL Photonics 4 056102
[6] Chen D J, Cheng Y L, Zhou N, Chen P, Wang Y P, Li K, Huo S H, Cheng P F, Peng P, Zhang R C, Wang L, Liu H, Liu Y H and Ruan R 2020 J. Clean. Prod. 268 121725
[7] Ni M, Leung M K, Leung D Y and Sumathy K 2007 Renew. Sust. Energ. Rev. 11 401
[8] Junkar I, Kulkarni M, Drašler B, Rugelj N, Mazare N, Flašker A, Drobne D, Humpolícek P, Resnik M, Schmuki P, Mozetič M and Iglič A 2016 Bioelectrochemistry 109 79
[9] Lee J W, Lee T Y, Yoo P J, Grätzel M, Mhaisalkar S and Park N G 2014 J. Mater. Chem. A 2 9251
[10] Xu Z F, Tong C J, Si R T, Teobaldi G and Liu L M 2022 J. Phys. Chem. Lett. 13 857
[11] Xu Y Z, Wang Z, Chen H L and Weng Y X 2024 J. Phys. Chem. C 128 2096
[12] deQuilettes D W, Frohna K, Emin D, Kirchartz T, Bulovic V, Ginger D S and Stranks S D 2019 Chem. Rev. 119 11007
[13] Sahoo S, Ghorai G, Ghosh K, Das B, Sikdar M K and Sahoo P K 2021 AIP Adv. 11 105013
[14] Li Z L, Li Z Q, Zuo C L and Fang X S 2022 Adv. Mater. 34 2109083
[15] Nakata K and Fujishima A 2012 J. Photoch. Photobio. C 13 169
[16] Djokić V R, Marinković A D, Petrović R D, Ersen O, Zafeiratos S, Mitrić M, Ophus C, Radmilović V R and Janaćković D T 2020 ACS Appl. Mater. Interfaces 12 33058
[17] Mitev P D, Hermansson K, Montanari B and Refson K 2010 Phys. Rev. B 81 134303
[18] Abdullah S A, Sahdan M Z, Nayan N, Embong Z, Hak C R and Adriyanto F 2020 Mater. Lett. 263 127143
[19] Parkin W M, Balan A, Liang L, Das P M, Lamparski M, Naylor C H, Rodríguez-Manzo J A, Johnson A T, Meunier V and Drndić M 2016 ACS Nano 10 4134
[20] Rani C, Pathak D K, Tanwar M, Kandpal S, Ghosh T, Maximov M Y and Kumar R 2022 Mater. Adv. 3 1602
[21] Wu Y N, Saidi W A, Ohodnicki P, Chorpening B and Duan Y 2018 J. Phys. Chem. C 122 22642
[22] Swamy V, Muddle B C and Dai Q 2006 Appl. Phys. Lett. 89 163118
[23] Lukačević I, Gupta S K, Jha P K and Kirin D 2012 Mater. Chem. Phys. 137 282
[24] Lan T, Tang X L and Fultz B 2012 Phys. Rev. B 85 094305
[25] Zhang Y L, Harris C X, Wallenmeyer P, Murowchick J and Chen X B 2013 J. Phys. Chem. C 117 24015
[26] Huang Y L, Lee Y T, Yeh V and Cheng C L 2009 J. Lumin. 129 1762
[27] Machon D, Le Bail N, Hermet P, Cornier T, Daniele S and Vignoli S 2019 J. Phys. Chem. C 123 1948
[28] Liu Y J, Y. Zhang, Lei H X, Song J W, H. Chen and Li B J 2012 Opt. Express 20 19404
[29] Chauhan M and Singh V K 2023 J. Optics 52 2285
[30] Di Valentin C and Selloni A 2011 J. Phys. Chem. Lett. 2 2223
[31] Cheng J, VandeVondele V and Sprik M 2014 J. Phys. Chem. C 118 5437
[32] Wang D, Wang H F and Hu P 2015 Phys. Chem. Chem. Phys. 17 1549
[33] Wu S F, Chen C, Wang J M, Xiao J R and Peng T Y 2018 ACS Appl. Energy Mater. 1 1649
[34] Landmann M, Rauls E and Schmidt W G 2012 J. Phys.-Condens. Matter 24 195503
[35] Sarina S, Waclawik E R and Zhu H Y 2013 Green Chemistry 15 1814
[36] Sezen H, Buchholz M, Nefedov A, Natzeck C, Heissler S, Di Valentin C and Wöll C 2014 Sci. Rep. 4 3808
[37] Deskins N A and Dupuis M 2009 J. Phys. Chem. C 113 346
[38] Hassen F, Zaaboub Z, Bouhlel M, Naffouti M, Maaref H and Garni N M 2015 Thin Solid Films 594 168
[39] Dimitropoulos D, Jhaveri R, Claps R, Woo J C and Jalali B 2005 Appl. Phys. Lett. 86 071115
[40] Sunny A, Thirumurugan A and Balasubramanian K 2020 Phys. Chem. Chem. Phys. 22 2001
[41] Zhang L L, Chu W B, Zhao C Y, Zheng Q J, Prezhdo O V and Zhao J 2021 J. Phys. Chem. Lett. 12 2191
[42] Shen S Y, Jiang X X, Zheng Y S, Xue X X, Feng Y X, Zeng J and Chen K Q 2023 Phys. Chem. Chem. Phys. 25 7519
[43] De Lile J R, Bahadoran A, Zhou S and Zhang J J 2022 Adv. Theor. Simul. 5 2100244
[44] You P W, Chen D Q, Liu X B, Zhang C, Selloni A and Meng S 2024 Nat. Mater. 23 1100
[45] Beechem T and Graham S 2008 J. Appl. Phys. 103 093507
[46] Wu M C, Liao H C, Cho Y C, Tóth G, Chen Y F, Su W F and Kordás K 2013 J. Mater. Chem. A 1 5715
[47] Mao J, An X Q, Gu Z N, Zhou J, Liu H J and Qu J H 2020 Environ. Sci. Technol. 54 10323
[1] Anti-Stokes/Stokes temperature calibration and its application in laser-heating diamond anvil cells
Minmin Zhao(赵旻旻), Binbin Wu(吴彬彬), Jingyi Liu(刘静仪), and Li Lei(雷力). Chin. Phys. B, 2023, 32(9): 090704.
[2] Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization
Luyi Sun(孙路易), Fangyuan Zhai(翟方园), Zengqiang Cao(曹增强), Xiaoyu Huang(黄晓宇), Chunsheng Guo(郭春生), Hongyan Wang(王红艳), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2023, 32(5): 056301.
[3] Lattice thermal conductivity switching via structural phase transition in ferromagnetic VI3
Chao Wu(吴超) and Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(5): 056502.
[4] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[5] Unveiling localized electronic properties of ReS2 thin layers at nanoscale using Kelvin force probe microscopy combined with tip-enhanced Raman spectroscopy
Yu Luo(罗宇), Weitao Su(苏伟涛), Juanjuan Zhang(张娟娟), Fei Chen(陈飞), Ke Wu(武可), Yijie Zeng(曾宜杰), and Hongwei Lu(卢红伟). Chin. Phys. B, 2023, 32(11): 117801.
[6] Straight and twisted Weyl nodal line phonons in Ho2CF2 material
Xin-Yue Kang(康鑫越), Jin-Yang Li(李金洋), and Si Li(李思). Chin. Phys. B, 2023, 32(11): 116301.
[7] Reconstructing in vivo spatially offset Raman spectroscopy of human skin tissue using a GPU-accelerated Monte Carlo platform
Yun-He Zhang(张云鹤), Huan-Zheng Zhu(朱桓正), Yong-Jiang Dong(董泳江), Jia Zeng(曾佳), Xin-Peng Han(韩新鹏), Ivan A. Bratchenko, Fu-Rong Zhang(张富荣), Si-Yuan Xu(许思源), and Shuang Wang(王爽). Chin. Phys. B, 2023, 32(11): 118702.
[8] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[9] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[10] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[11] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[12] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[13] Photothermal-chemical synthesis of P-S-H ternary hydride at high pressures
Tingting Ye(叶婷婷), Hong Zeng(曾鸿), Peng Cheng(程鹏), Deyuan Yao(姚德元), Xiaomei Pan(潘孝美), Xiao Zhang(张晓), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(6): 067402.
[14] Raman spectroscopy investigation on the pressure-induced structural and magnetic phase transition in two-dimensional antiferromagnet FePS3
Hong Zeng(曾鸿), Tingting Ye(叶婷婷), Peng Cheng(程鹏), Deyuan Yao(姚德元), and Junfeng Ding(丁俊峰). Chin. Phys. B, 2022, 31(5): 056109.
[15] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
No Suggested Reading articles found!