Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 056502    DOI: 10.1088/1674-1056/acb764
Special Issue: SPECIAL TOPIC — Smart design of materials and design of smart materials
SPECIAL TOPIC—Smart design of materials and design of smart materials Prev   Next  

Lattice thermal conductivity switching via structural phase transition in ferromagnetic VI3

Chao Wu(吴超)1,4 and Chenhan Liu(刘晨晗)1,2,3,†
1 Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China;
2 Micro-and Nano-scale Thermal Measurement and Thermal Management Laboratory, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China;
3 Jiangsu Key Laboratory for Numerical Simulation of Large-Scale Complex Systems, Nanjing Normal University, Nanjing 210023, China;
4 Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China
Abstract  The realization of reversible thermal conductivity through ferromagnetic ordering can improve the heat management and energy efficiency in magnetic materials-based devices. VI$_{3}$, as a new layered ferromagnetic semiconductor, exhibits a structural phase transition from monoclinic ($C2/m$) to rhombohedral ($R\bar{3}$) phase as temperature decreases, making it a suitable platform to investigate thermal switching in magnetic phase transition materials. This work reveals that the thermal switching ratio of VI$_{3}$ can reach 3.9 along the $a$-axis. Mechanical properties analysis indicates that the $C2/m$ structure is stiffer than the $R\bar{3}$ one, causing the larger phonon velocity in $C2/m$ phase. Moreover, due to the fewer phonon branches in $C2/m$ phase, the number of phonon-phonon scattering channels in $C2/m$ phase is smaller compared to that of $R\bar{3}$ phase. Both the larger phonon velocity and the longer phonon lifetime lead to larger lattice thermal conductivity in $C2/m$ phase. This study uncovers the mechanical and thermal properties of VI$_{3}$, which provides useful guides for designing magnetic materials-based devices such as thermal switch.
Keywords:  thermal switching      ferromagnetic ordering      phonons  
Received:  16 November 2022      Revised:  10 January 2023      Accepted manuscript online:  31 January 2023
PACS:  65.80.Ck (Thermal properties of graphene)  
  77.80.Fm (Switching phenomena)  
  77.80.B- (Phase transitions and Curie point)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52206092) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20210565). C. Liu was funded by Department of Science and Technology of Jiangsu Province, China (Grant No. BK20220032), Basic Science (Natural Science) Research Project of Higher Education Institutions of Jiangsu Province, China (Grant No. 21KJB470009), and Nanjing Science and Technology Innovation Project for Overseas Students. C. Liu was also funded by "Shuangchuang" Doctor Program of Jiangsu Province, China (Grant No. JSSCBS20210315) and open research fund of Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University (Grant No. KF202010). The authors thank the Scientific Computing Center of Nanjing Normal University and the Big Data Center of Southeast University for performing the numerical calculations presented in this paper.
Corresponding Authors:  Chenhan Liu     E-mail:  chenhanliu@njnu.edu.cn

Cite this article: 

Chao Wu(吴超) and Chenhan Liu(刘晨晗) Lattice thermal conductivity switching via structural phase transition in ferromagnetic VI3 2023 Chin. Phys. B 32 056502

[1] Aryana K, Tomko J A, Gao R, Hoglund E R, Mimura T, Makarem S, Salanova A, Hoque M S B, Pfeifer T W, Olson D H, Braun J L, Nag J, Read J C, Howe J M, Opila E J, Martin L W, Ihlefeld J F and Hopkins P E 2022 Nat. Commun. 13 1573
[2] Du T, Xiong Z, Delgado L, Liao W, Peoples J, Kantharaj R, Chowdhury P R, Marconnet A and Ruan X 2021 Nat. Commun. 12 4915
[3] Tomko J A, Pena-Francesch A, Jung H, Tyagi M, Allen B D, Demirel M C and Hopkins P E 2018 Nat. Nanotech. 13 959
[4] Liu C and Chen Y 2022 Sci. China-Phys. Mech. Astron. 65 117009
[5] Wehmeyer G, Yabuki T, Monachon C, Wu J and Dames C 2017 Appl. Phys. Rev. 4 041304
[6] Liu C, Mishra V, Chen Y and Dames C 2018 Adv. Theor. Simul. 1 1800098
[7] Liu C, Lu P, Gu Z Z, Yang J and Chen Y 2020 J. Phys. Chem. C 124 26144
[8] Wang Y and Ren J 2021 ACS Appl. Mater. Interfaces 13 34724
[9] Liu Y, Liu Q, Liu Y, Jiang X, Zhang X and Zhao J 2021 Nanoscale 13 7714
[10] Liu C, Si W, Wu C, Yang J, Chen Y and Dames C 2020 Acta Mater. 191 221
[11] Zhang W, Chen W Z and Jiang Z Y 2012 Acta Phys. Sin. 61 148105 (in Chinese)
[12] Cocemasov A I, Isacova C I and Nika D L 2018 Chin. Phys. B 27 056301
[13] Ihlefeld J F, Foley B M, Scrymgeour D A, Michael J R, McKenzie B B, Medlin D L, Wallace M, Trolier-McKinstry S and Hopkins P E 2015 Nano Lett. 15 1791
[14] Liu H, Shi X, Xu F, Zhang L, Zhang W, Chen L, Li Q, Uher C, Day T and Snyder G J 2012 Nat. Mater. 11 422
[15] Shrestha R, Luan Y, Shin S, Zhang T, Luo X, Lundh J S, Gong W, Bockstaller M R, Choi S, Luo T, Chen R, Hippalgaonkar K and Shen S 2019 Sci. Adv. 5 eaax3777
[16] Lu Q, Huberman S, Zhang H, Song Q, Wang J, Vardar G, Hunt A, Waluyo I, Chen G and Yildiz B 2020 Nat. Mater. 19 655
[17] Liu C, Chen Z, Wu C, Qi J, Hao M, Lu P and Chen Y 2022 ACS Appl. Mater. Interfaces 14 46716
[18] Lyu B B, Gao Y F, Zhang Y, Wang L, Wu X, Chen Y, Zhang J, Li G, Huang Q, Zhang N, Chen Y, Mei J, Yan H, Zhao Y, Huang L and Huang M 2020 Nano Lett. 20 6024
[19] Tian S, Zhang J F, Li C, Ying T, Li S, Zhang X, Liu K and Lei H 2019 J. Am. Chem. Soc. 141 5326
[20] Kong T, Stolze K, Timmons E I, Tao J, Ni D, Guo S, Yang Z, Prozorov R and Cava R J 2019 Adv. Mater. 31 1808074
[21] Kheirkhah M, Yan Z, Nagai Y and Marsiglio F 2020 Phys. Rev. Lett. 125 017001
[22] Guin S N, Banerjee S, Sanyal D, Pati S K and Biswas K 2017 Chem. Mater. 29 3769
[23] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[24] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[25] Dingreville R and Qu J 2005 J. Mech. Phys. Solids 53 1827
[26] Watt J P 1980 J. Appl. Phys. 51 1520
[27] Azzouz L, Halit M, Sidoumou M, Charifi Z, Allal A, Bouchenafa M and Baaziz H 2019 Phys. Status Solidi B 256 1900136
[28] Chung D H and Buessem W R 1967 J. Appl. Phys. 38 2535
[29] Gaillac R, Pullumbi P and Coudert F X 2016 J. Phys. Condens. Matter 28 275201
[30] Li W, Carrete J, A. Katcho N and Mingo N 2014 Comput. Phys. Commun. 185 1747
[31] Li W and Mingo N 2014 Phys. Rev. B 89 184304
[32] Li W and Mingo N 2015 Phys. Rev. B 91 144304
[33] Torres P, Torelló A, Bafaluy J, Camacho J, Cartoixá X and Alvarez F X 2017 Phys. Rev. B 95 165407
[34] Xiao Y, Chang C, Pei Y, Wu D, Peng K, Zhou X, Gong S, He J, Zhang Y, Zeng Z and Zhao L D 2016 Phys. Rev. B 94 125203
[35] Hill R 1952 Proc. Phys. Soc. Sect. A 65 349
[36] Cantos-Prieto F, Falin A, Alliati M, Qian D, Zhang R, Tao T, Barnett M R, Santos E J G, Li L H and Navarro-Moratalla E 2021 Nano Lett. 21 3379
[37] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[38] Liu H, Tang S, Ma Y, Liu W and Liang C 2021 Scripta Mater. 204 114136
[39] Cazorla C and Rurali R 2022 Phys. Rev. B 105 104401
[40] Li H, Zhang P, Ouyang T, Wang H, Li J, He C, Zhang C and Tang C 2022 Appl. Phys. Lett. 120 092403
[41] Wang Z, Zhang T, Ding M, Dong B, Li Y, Chen M, Li X, Huang J, Wang H, Zhao X, Li Y, Li D, Jia C, Sun L, Guo H, Ye Y, Sun D, Chen Y, Yang T, Zhang J, Ono S, Han Z and Zhang Z 2018 Nat. Nanotech. 13 554
[42] Raya-Moreno M, Rurali R and Cartoixá X 2019 Phys. Rev. Mater. 3 084607
[43] Qin G, Wang H, Zhang L, Qin Z and Hu M 2020 J. Mater. Chem. C 8 3520
[1] Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization
Luyi Sun(孙路易), Fangyuan Zhai(翟方园), Zengqiang Cao(曹增强), Xiaoyu Huang(黄晓宇), Chunsheng Guo(郭春生), Hongyan Wang(王红艳), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2023, 32(5): 056301.
[2] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[3] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[4] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
[5] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[6] Topology of triple-point metals
Georg W. Winkler, Sobhit Singh, Alexey A. Soluyanov. Chin. Phys. B, 2019, 28(7): 077303.
[7] Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach
Xu-Min Chen(陈许敏), Chen Wang(王晨). Chin. Phys. B, 2019, 28(5): 050502.
[8] Modulated thermal transport for flexural and in-plane phonons in double-stub graphene nanoribbons
Chang-Ning Pan(潘长宁), Meng-Qiu Long(龙孟秋), Jun He(何军). Chin. Phys. B, 2018, 27(8): 088101.
[9] Thermal transport in semiconductor nanostructures, graphene, and related two-dimensional materials
Alexandr I. Cocemasov, Calina I. Isacova, Denis L. Nika. Chin. Phys. B, 2018, 27(5): 056301.
[10] Cavity optomechanics: Manipulating photons and phonons towards the single-photon strong coupling
Yu-long Liu(刘玉龙), Chong Wang(王冲), Jing Zhang(张靖), Yu-xi Liu(刘玉玺). Chin. Phys. B, 2018, 27(2): 024204.
[11] Lattice vibration and thermodynamical properties of a single-layergraphene in the presence of vacancy defects
Sha Li(黎莎), Zeng-Tao Lv(吕增涛). Chin. Phys. B, 2017, 26(3): 036303.
[12] Elastic, dielectric, and piezoelectric characterization of 0.92Pb(Zn1/3Nb2/3)O3-0.08PbTiO3 single crystal by Brillouin scattering
Fang Shao-Xi (方绍熙), Tang Dong-Yun (汤冬云), Chen Zhao-Ming (陈昭明), Zhang Hua (张华), Liu Yu-Long (刘玉龙). Chin. Phys. B, 2015, 24(2): 027802.
[13] Gigahertz longitudinal acoustic phonons originating from ultrafast ligand field transitions in hematite thin films
Xu Yue (徐悦), Jin Zuan-Ming (金钻明), Zhang Zheng-Bing (张郑兵), Zhang Ze-Yu (张泽宇), Lin Xian (林贤), Ma Guo-Hong (马国宏), Cheng Zhen-Xiang (程振祥). Chin. Phys. B, 2014, 23(4): 044206.
[14] Magnetic phase transitions and large mass enhancement in single crystal CaFe4As3
Zhang Xiao-Dong(张晓冬), Wu Wei(吴伟), Zheng Ping(郑萍), Wang Nan-Lin(王楠林), and Luo Jian-Lin(雒建林) . Chin. Phys. B, 2012, 21(1): 017402.
[15] Phonon spectrum and related thermodynamic properties of microcrack in bcc-Fe
Cao Li-Xia(曹莉霞) and Wang Chong-Yu(王崇愚). Chin. Phys. B, 2006, 15(9): 2092-2101.
No Suggested Reading articles found!