Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 107301    DOI: 10.1088/1674-1056/ad655b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Peak structure in the interlayer conductance of Moiré superlattices

Yizhou Tao(陶懿洲)1, Chao Liu(刘超)1, Mingwen Xiao(肖明文)2, and Henan Fang(方贺男)1,†
1 College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 Department of Physics, Nanjing University, Nanjing 210093, China
Abstract  We investigate the peak structure in the interlayer conductance of Moiré superlattices using a tunneling theory we developed previously. The theoretical results predict that, due to the resonance of two different partial waves, the double-peak structure can appear in the curve of the interlayer conductance versus twist angle. Furthermore, we study the influences of the model parameters, i.e., the chemical potential of electrodes, the thickness of Moiré superlattice, and the strength of interface potential, on the peak structure of the interlayer conductance. In particular, the parameter dependence of the peak structure is concluded via a phase diagram, and the physical meanings of the phase diagram is formulized. Finally, the potential applications of the present work is discussed.
Keywords:  Moiré superlattice      interlayer conductance      electronic transport      twistronics  
Received:  04 March 2024      Revised:  07 July 2024      Accepted manuscript online:  19 July 2024
PACS:  73.43.Jn (Tunneling)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  72.80.Vp (Electronic transport in graphene)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11704197) and the Natural Science Foundation of Nanjing University of Posts and Telecommunications (Grant Nos. NY221066 and NY223074).
Corresponding Authors:  Henan Fang     E-mail:  fanghn@njupt.edu.cn

Cite this article: 

Yizhou Tao(陶懿洲), Chao Liu(刘超), Mingwen Xiao(肖明文), and Henan Fang(方贺男) Peak structure in the interlayer conductance of Moiré superlattices 2024 Chin. Phys. B 33 107301

[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Balandin A A 2011 Nat. Mater. 10 569
[3] Xu M, Liang T, Shi M and Chen H 2013 Chem. Rev. 113 3766
[4] Xia F, Wang H, Xiao D, Dubey M and Ramasubramaniam A 2014 Nat. Photon. 8 899
[5] Chu Y, Liu L, Yuan Y, Shen C, Yang R, Shi D, Yang W and Zhang G 2020 Chin. Phys. B 29 128104
[6] McGilly L J, Kerelsky A, Finney N R, Shapovalov K, Shih E M, Ghiotto A, Zeng Y, Moore S L, Wu W, Bai Y, Watanabe K J, Taniguchi T, Stengel M, Zhou L, Hone J, Zhu X, Basov D N, Dean C, Dreyer C E and Pasupathy A N 2020 Nat. Nanotechnol. 15 580
[7] Li T, Jiang S, Li L, Zhang Y, Kang K, Zhu J, Watanabe K, Taniguchi T, Chowdhury D, Fu L, Shan J and Mak K F 2021 Nature 597 350
[8] Tang K and Qi W 2020 Adv. Funct. Mater. 30 2002672
[9] Wang S, Song J, Sun M and Cao S 2023 Nanomaterials 13 2881
[10] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, SanchezYamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[11] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
[12] Yoo H, Engelke R, Carr S, Fang S, Zhang K, Cazeaux P, Sung S H, Hovden R, Tsen A W, Taniguchi T, Watanabe K, Yi G C, Kim M, Luskin M, Tadmor E B, Kaxiras E and Kim P 2019 Nat. Mater. 18 448
[13] Chung T F, Xu Y and Chen Y P 2018 Phys. Rev. B 98 035425
[14] Liao M, Wu Z W, Du L, Zhang T, Wei Z, Zhu J, Yu H, Tang J, Gu L, Xing Y, Yang R, Shi D, Yao Y and Zhang G 2018 Nat. Commun. 9 4068
[15] Yu Z, Song A, Sun L, Li Y, Gao L, Peng H, Ma T, Liu Z and Luo J 2020 Small 16 1902844
[16] Koren E, Leven I, Lörtscher E, Knoll A, Hod O and Duerig U 2016 Nat. Nanotechnol. 11 752
[17] Chari T, Ribeiro-Palau R, Dean C R and Shepard K L 2016 Nano Lett. 16 4477
[18] Inbar A, Birkbeck J, Xiao J, Taniguchi T, Watanabe K, Yan B, Oreg Y, Stern A, Berg E and Ilani S 2023 Nature 614 682
[19] Kim Y, Yun H, Nam S G, Son M, Lee D S, Kim D C, Seo S, Choi H C, Lee H J, Lee S W and Kim J S 2013 Phys. Rev. Lett. 110 096602
[20] Li H, Wei X, Wu G, Gao S, Chen Q and Peng L M 2018 Ultramicroscopy 193 90
[21] Fang H and Xiao M 2021 ACS Appl. Electron. Mater. 3 2543
[22] Chung D D L 2002 J. Mater. Sci. 37 1475
[23] Capasso F, Sen S, Cho A Y and Sivco D 1987 IEEE Electron Device Lett. 8 297
[1] Gate-field control of valley polarization in valleytronics
Ting-Ting Zhang(张婷婷), Yilin Han(韩依琳), Run-Wu Zhang(张闰午), and Zhi-Ming Yu(余智明). Chin. Phys. B, 2024, 33(6): 067303.
[2] Transport properties of Hall-type quantum states in disordered bismuthene
Jiaojiao Zhou(周娇娇), Jiangying Yu(余江应), Shuguang Cheng(成淑光), and Hua Jiang(江华). Chin. Phys. B, 2024, 33(4): 047105.
[3] Regulating Anderson localization with structural defect disorder
Mouyang Cheng(程谋阳), Haoxiang Chen(陈浩翔), and Ji Chen(陈基). Chin. Phys. B, 2024, 33(10): 107201.
[4] Customizing topological phases in the twisted bilayer superconductors with even-parity pairings
Conghao Lin(林丛豪), Chuanshuai Huang(黄传帅), and Xiancong Lu(卢仙聪). Chin. Phys. B, 2023, 32(8): 087401.
[5] Epitaxial growth of trilayer graphene moiré superlattice
Yalong Yuan(袁亚龙), Yanbang Chu(褚衍邦), Cheng Hu(胡成), Jinpeng Tian(田金朋), Le Liu(刘乐), Fanfan Wu(吴帆帆), Yiru Ji(季怡汝), Jiaojiao Zhao(赵交交), Zhiheng Huang(黄智恒), Xiaozhou Zan(昝晓洲), Luojun Du(杜罗军), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Zhiwen Shi(史志文), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2023, 32(7): 077304.
[6] Magnetic and magnetotransport properties of layered TaCoTe2 single crystals
Ming Mei(梅明), Zheng Chen(陈正), Yong Nie(聂勇), Yuanyuan Wang(王园园), Xiangde Zhu(朱相德), Wei Ning(宁伟), and Mingliang Tian(田明亮). Chin. Phys. B, 2023, 32(12): 127303.
[7] Moiré Dirac fermions in transition metal dichalcogenides heterobilayers
Chenglong Che(车成龙), Yawei Lv(吕亚威), and Qingjun Tong(童庆军). Chin. Phys. B, 2023, 32(10): 107307.
[8] Effects of strain on the flat band in twisted bilayer graphene
Zhen Zhang(张镇), Lu Wen(文露), Youkai Qiao(乔友凯), and Zhiqiang Li(李志强). Chin. Phys. B, 2023, 32(10): 107302.
[9] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[10] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[11] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[12] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[13] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[14] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[15] Tuning transport coefficients of monolayer MoSi2N4 with biaxial strain
Xiao-Shu Guo(郭小姝) and San-Dong Guo(郭三栋). Chin. Phys. B, 2021, 30(6): 067102.
No Suggested Reading articles found!