|
|
Transport dynamics of an interacting binary Bose–Einstein condensate in an incommensurate optical lattice |
Cui Guo-Dong (崔国栋)a b, Sun Jian-Fang (孙剑芳)a b, Jiang Bo-Nan (姜伯楠)a b, Qian Jun (钱军)a, Wang Yu-Zhu (王育竹)a |
a Key Laboratory for Quantum Optics, Center for Cold Atoms, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
b University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We investigate the transport dynamics of an interacting binary Bose-Einstein condensate in an incommensurate optical lattice and predict a novel splitting of a matter wavepacket induced by disorder potential and inter–species interaction. The effect of atomic interaction on the dynamics of the mobile and localized atoms are also studied in detail. We also discuss the behavior of the balanced and inbalanced mixtures in the incommensurate optical lattice.
|
Received: 02 April 2013
Revised: 07 May 2013
Accepted manuscript online:
|
PACS:
|
05.30.Jp
|
(Boson systems)
|
|
03.75.Hh
|
(Static properties of condensates; thermodynamical, statistical, and structural properties)
|
|
03.75.Mn
|
(Multicomponent condensates; spinor condensates)
|
|
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11104292) and the National Basic Research Program of China (Grant No. 2011CB921504). |
Corresponding Authors:
Qian Jun, Wang Yu-Zhu
E-mail: jqian@siom.ac.cn;yzwang@mail.shcnc.ac.cn
|
Cite this article:
Cui Guo-Dong (崔国栋), Sun Jian-Fang (孙剑芳), Jiang Bo-Nan (姜伯楠), Qian Jun (钱军), Wang Yu-Zhu (王育竹) Transport dynamics of an interacting binary Bose–Einstein condensate in an incommensurate optical lattice 2013 Chin. Phys. B 22 100501
|
[1] |
Anderson P W 1958 Phys. Rev. 109 1492
|
[2] |
Mott N F and Twose W D 1961 Adv. Phys. 10 107
|
[3] |
Borland R E 1963 Proc. R. Soc. A 274 529
|
[4] |
Abrahams E, Anderson P W, Licciardello D C and Ramakrishnan T V 1979 Phys. Rev. Lett. 42 673
|
[5] |
Ioffe A F and Regel A R 1960 Prog. Semicond. 4 237
|
[6] |
Mott N F 1967 Adv. Phys. 16 49
|
[7] |
Harper P G 1955 Proc. Phys. Soc. A 68 874
|
[8] |
Aubry S and André 1980 Ann. Israel Phys. Soc. 3 133
|
[9] |
Wiersma D S, Bartolini P, Lagendijk A and Righini R 1997 Nature 390 671
|
[10] |
Störzer M, Gross P, Aegerter C M and Maret G 2006 Phys. Rev. Lett. 96 063904
|
[11] |
Schwartz T, Bartal G, Fishman S and Segev M 2007 Nature 446 52
|
[12] |
Lahini Y, Avidan A, Pozzi F, Sorel M, Morandotti R, Christodoulides D N and Silberberg Y 2008 Phys. Rev. Lett. 100 013906
|
[13] |
Chabanov A A, Stoytchev M and Genack A Z 2000 Nature 404 850
|
[14] |
Hu H, Strybulevych A, Page J H, Skipetrov S E and van Tiggelen B A 2008 Nat. Phys. 4 945
|
[15] |
Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen A and Sen U 2007 Adv. Phys. 56 243
|
[16] |
Lye J E, Fallani L, Modugno M, Wiersma D S, Fort C and Inguscio M 2005 Phys. Rev. Lett. 95 070401
|
[17] |
Sanchez-Palencia L and Lewenstein M 2010 Nat. Phys. 6 87
|
[18] |
Roati G, D’Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and Inguscio M 2008 Nature 453 895
|
[19] |
Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clément D, Sanchez-Palencia L, Bouyer P and Aspect A 2008 Nature 453 891
|
[20] |
Kondov S S, McGehee W R, Zirbel J J and DeMarco B 2011 Science 334 66
|
[21] |
Jendrzejewski F, Bernard A, Müller K, Cheinet P, Josse V, Piraud M, Pezze L, Sanchez-Palencia L, Aspect A and Bouyer P 2012 Nat. Phys. 8 398
|
[22] |
Myatt C J, Burt E A, Ghrist R W, Cornell E A and Wieman C E 1997 Phys. Rev. Lett. 78 586
|
[23] |
Thalhammer G, Barontini G, De Sarlo L, Catani J, Minardi F and Inguscio M 2008 Phys. Rev. Lett. 100 210402
|
[24] |
Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
|
[25] |
Zhou Y, Huang G X, Ma X D and Ma Y L 2006 Chin. Phys. 15 1871
|
[26] |
Hao Y J and Liang J Q 2006 Chin. Phys. 15 1161
|
[27] |
Ao S M and Yan J R 2006 Chin. Phys. 15 296
|
[28] |
Zhan M S, Wen L H, Liu M, Kong L B and Chen A X 2005 Chin. Phys. 14 690
|
[29] |
Wang D L, Tang Y and Yan X H 2004 Chin. Phys. 12 203
|
[30] |
Papp S B, Pino J M and Wieman C E 2008 Phys. Rev. Lett. 101 040402
|
[31] |
Pu H and Bigelow N P 1998 Phys. Rev. Lett. 80 1134
|
[32] |
Pu H and Bigelow N P 1998 Phys. Rev. Lett. 80 1130
|
[33] |
Zhou X J, Li W D, Chen X Z and Wang Y Q 2002 Chin. Phys. Lett. 19 1581
|
[34] |
Wang D S, Hu X H and Liu W M 2010 Phys. Rev. A 82 023612
|
[35] |
Press W H, Teukolsky S A, Vetterling W T and Flannery B P 2007 Numerical Recipes: The Art of Scientific Computing, 3rd edn. (Cambridge: Cambridge University Press)
|
[36] |
Modugno G 2010 Rep. Prog. Phys. 73 102401
|
[37] |
Xu Z, Duan Y F, Zhou S Y, Hong T and Wang Y Z 2009 Chin. Phys. Lett. 26 090303
|
[38] |
De Nicola S, Malomed B A and Fedele R 2006 Phys. Lett. A 360 164
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|