Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 107106    DOI: 10.1088/1674-1056/ad6558
COMPUTATIONAL PROGRAMS FOR PHYSICS Prev   Next  

Charge self-consistent dynamical mean field theory calculations in combination with linear combination of numerical atomic orbitals framework based density functional theory

Xin Qu(瞿鑫)1, Peng Xu(许鹏)2,†, Zhiyong Liu(刘志勇)3, Jintao Wang(王金涛)2, Fei Wang(王飞)2, Wei Huang(黄威)1, Zhongxin Li(李忠星)1, Weichang Xu(徐卫昌)1, and Xinguo Ren(任新国)4,‡
1 Qingzhou High Technology Institute, Weifang 262500, China;
2 Rocket Force University of Engineering, Xi'an 710025, China;
3 Beijing Research Institute of High Technology, Beijing 100077, China;
4 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We present a formalism of charge self-consistent dynamical mean field theory (DMFT) in combination with density functional theory (DFT) within the linear combination of numerical atomic orbitals (LCNAO) framework. We implemented the charge self-consistent $\rm DFT+DMFT$ formalism by interfacing a full-potential all-electron DFT code with three hybridization expansion-based continuous-time quantum Monte Carlo impurity solvers. The benchmarks on several 3d, 4f and 5f strongly correlated electron systems validated our formalism and implementation. Furthermore, within the LCANO framework, our formalism is general and the code architecture is extensible, so it can work as a bridge merging different LCNAO DFT packages and impurity solvers to do charge self-consistent $\rm DFT+DMFT$ calculations.
Keywords:  dynamical mean field theory      density functional theory      strongly correlated electrons  
Received:  29 May 2024      Revised:  10 July 2024      Accepted manuscript online:  19 July 2024
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.-m (Methods of electronic structure calculations)  
Corresponding Authors:  Peng Xu, Xinguo Ren     E-mail:  xupeng76345@163.com;renxg@iphy.ac.cn

Cite this article: 

Xin Qu(瞿鑫), Peng Xu(许鹏), Zhiyong Liu(刘志勇), Jintao Wang(王金涛), Fei Wang(王飞), Wei Huang(黄威), Zhongxin Li(李忠星), Weichang Xu(徐卫昌), and Xinguo Ren(任新国) Charge self-consistent dynamical mean field theory calculations in combination with linear combination of numerical atomic orbitals framework based density functional theory 2024 Chin. Phys. B 33 107106

[1] Anisimov V V, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943
[2] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13
[3] Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O and Marianetti C A 2006 Rev. Mod. Phys. 78 865
[4] Held K 2007 Adv. Phys. 56 829
[5] Metzner W and Vollhardt D 1989 Phys. Rev. Lett. 62 324
[6] Anisimov V I, Poteryaev A I, Korotin M A, Anokhin A O and Kotliar G 1997 J. Phys. Condens. Matter 9 7359
[7] Lichtenstein A I and Katsnelson M I 1998 Phys. Rev. B 57 6884
[8] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[9] Becke A D 1993 J. Chem. Phys. 98 5648
[10] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[11] Li C, Zheng X, Su N Q and Yang W 2018 Natl. Sci. Rev. 5 203
[12] Su N Q, Mahler A and Yang W 2020 J. Phys. Chem. Lett. 11 1528
[13] Su N Q, Li C and Yang W 2018 Proc. Natl. Acad. Sci. USA 115 9678
[14] Anisimov V I, Solovyev I V, Korotin M A, Czyżyk M T and Sawatzky G A 1993 Phys. Rev. B 48 16929
[15] Savrasov S Y, Kotliar G and Abrahams E 2001 Nature 410 793
[16] Dai X, Savrasov S Y, Kotliar G, Migliori A, Ledbetter H and Abrahams E 2003 Science 300 953
[17] Shim J H, Haule K and Kotliar G 2007 Nature 446 513
[18] Shim J H, Haule K and Kotliar G 2007 Science 318 1615
[19] Savrasov S Y and Kotliar G 2004 Phys. Rev. B 69 245101
[20] Hampel A, Beck S and Ederer C 2020 Phys. Rev. Res. 2 033088
[21] Beck S, Hampel A, Parcollet O, Ederer C and Georges A 2022 J. Phys. Condens. Matter 34 235601
[22] Plekhanov E, Hasnip P, Sacksteder V, Probert M, Clark S J, Refson K and Weber C 2018 Phys. Rev. B 98 075129
[23] Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
[24] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419
[25] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[26] Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Comput. Phys. Commun. 185 2309
[27] Schüler M, Peil O E, Kraberger G J, et al. 2018 J. Phys. Condens. Matter 30 475901
[28] Amadon B 2012 J. Phys. Condens. Matter 24 075604
[29] Gonze X, Jollet F, Abreu Araujo F, Adams D, et al. 2016 Comput. Phys. Commun. 205 106
[30] Haule K, Yee C H and Kim K 2010 Phys. Rev. B 81 195107
[31] Bhandary S, Assmann E, Aichhorn M and Held K 2016 Phys. Rev. B 94 155131
[32] Grånäs O, Di Marco I, Thunström P, Nordström L, Eriksson O, Björkman T and Wills J 2012 Comput. Mater. Sci. 55 295
[33] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P and Sánchez-Portal D 2002 J. Phys. Condens. Matter 14 2745
[34] Delley B 2000 J. Chem. Phys. 113 7756
[35] Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren X, Reuter K and Scheffler M 2009 Comput. Phys. Commun. 180 2175
[36] Li P, Liu X, Chen M, Lin P, Ren X, Lin L, Yang C and He L 2016 Comput. Mater. Sci. 112 503
[37] Sim J H and Han M J 2019 Phys. Rev. B 100 115151
[38] Qu X, Xu P, Li R, Li G, He L and Ren X 2022 J. Chem. Theory Comput. 18 5589
[39] Pulay P 1980 Chem. Phys. Lett. 73 393
[40] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[41] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[42] Werner P, Comanac A, De’ Medici L, Troyer M and Millis A J 2006 Phys. Rev. Lett. 97 076405
[43] Li G 2015 Phys. Rev. B 91 165134
[44] Huang L, Wang Y, Meng Z Y, Du L, Werner P and Dai X 2015 Comput. Phys. Commun. 195 140
[45] Huang L 2017 Comput. Phys. Commun. 221
[46] iQIST
[47] Haule K 2007 Phys. Rev. B 75 155113
[48] CTQMC impurity solver of eDMFT
[49] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[50] Lechermann F, Georges A, Poteryaev A, Biermann S, Posternak M, Yamasaki A and Andersen O K 2006 Phys. Rev. B 74 125120
[51] Amadon B, Lechermann F, Georges A, Jollet F, Wehling T O and Lichtenstein A I 2008 Phys. Rev. B 77 205112
[52] Pavarini E, Biermann S, Poteryaev A, Lichtenstein A I, Georges A and Andersen O K 2004 Phys. Rev. Lett. 92 176403
[53] Anisimov V I and Lukoyanov A V 2014 Acta Crystallogr. Sect. C Struct. Chem. 70 137
[54] Anisimov V I, Kondakov D E, Kozhevnikov A V, et al. 2005 Phys. Rev. B 71 125119
[55] Nekrasov I A, Held K, Keller G, et al. 2006 Phys. Rev. B 73 155112
[56] Nekrasov I A, Keller G, Kondakov D E, Kozhevnikov A V, Pruschke T, Held K, Vollhardt D and Anisimov V I 2005 Phys. Rev. B 72 155106
[57] Sekiyama A, Fujiwara H, Imada S, et al. 2004 Phys. Rev. Lett. 93 156402
[58] Ren X, Leonov I, Keller G, Kollar M, Nekrasov I and Vollhardt D 2006 Phys. Rev. B 74 195114
[59] Kuneš J, Anisimov V I, Lukoyanov A V and Vollhardt D 2007 Phys. Rev. B 75 165115
[60] Sawatzky G A and Allen J W 1984 Phys. Rev. Lett. 53 2339
[61] Held K, McMahan A K and Scalettar R T 2001 Phys. Rev. Lett. 87 276404
[62] Bieder J and Amadon B 2014 Phys. Rev. B 89 195132
[63] Amadon B, Biermann S, Georges A and Aryasetiawan F 2006 Phys. Rev. Lett. 96 066402
[64] Grioni M, Weibel P, Malterre D, Baer Y and Duò L 1997 Phys. Rev. B 55 2056
[65] Weschke E, Laubschat C, Simmons T, Domke M, Strebel O and Kaindl G 1991 Phys. Rev. B 44 8304
[66] Wen X D, Martin R L, Henderson T M and Scuseria G E 2013 Chem. Rev. 113 1063
[67] Yin Q and Savrasov S Y 2008 Phys. Rev. Lett. 100 225504
[68] Yin Q, Kutepov A, Haule K, Kotliar G, Savrasov S Y and Pickett W E 2011 Phys. Rev. B 84 195111
[69] Huang L, Wang Y and Werner P 2017 Europhys. Lett. 119 57007
[70] Baer Y and Schoenes J 1980 Solid State Commun. 33 885
[71] Barrett S A, Jacobson A J, Tofield B C and Fender B E F 1982 Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 38 2775
[72] https://kaist-elst.github.io/DMFTpack/
[1] Half-metallic ferromagnetic Weyl fermions related to dynamic correlations in the zinc-blende compound Vas
Xianyong Ding(丁献勇), Haoran Wei(魏皓然), Ruixiang Zhu(朱瑞翔), Xiaoliang Xiao(肖晓亮), Xiaozhi Wu(吴小志), and Rui Wang(王锐). Chin. Phys. B, 2024, 33(9): 097103.
[2] Comparative study of nudged elastic band and molecular dynamics methods for diffusion kinetics in solid-state electrolytes
Aming Lin(林啊鸣), Jing Shi(石晶), Su-Huai Wei(魏苏淮), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2024, 33(8): 086601.
[3] Rational molecular engineering towards efficient heterojunction solar cells based on organic molecular acceptors
Kaiyan Zhang(张凯彦), Peng Song(宋朋), Fengcai Ma(马凤才), and Yuanzuo Li(李源作). Chin. Phys. B, 2024, 33(6): 068402.
[4] Local thermal conductivity of inhomogeneous nano-fluidic films:A density functional theory perspective
Zongli Sun(孙宗利), Yanshuang Kang(康艳霜), and Yanmei Kang(康艳梅). Chin. Phys. B, 2024, 33(4): 046503.
[5] Plasmon-induced nonlinear response on gold nanoclusters
Yuhui Song(宋玉慧), Yifei Cao(曹逸飞), Sichen Huang(黄思晨), Kaichao Li(李凯超), Ruhai Du(杜如海), Lei Yan(严蕾), Zhengkun Fu(付正坤), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(4): 044204.
[6] Microscopic mechanism of plasmon-mediated photocatalytic H2 splitting on Ag-Au alloy chain
Yuhui Song(宋玉慧), Yirui Lu(芦一瑞), Axin Guo(郭阿鑫), Yifei Cao(曹逸飞), Jinping Li(李金萍), Zhengkun Fu(付正坤), Lei Yan(严蕾), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(3): 033101.
[7] Structure, electronic, and nonlinear optical properties of superalkaline M3O (M = Li, Na) doped cyclo[18]carbon
Xiao-Dong Liu(刘晓东), Qi-Liang Lu(卢其亮), and Qi-Quan Luo(罗其全). Chin. Phys. B, 2024, 33(2): 023601.
[8] Databases of 2D material-substrate interfaces and 2D charged building blocks
Jun Deng(邓俊), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2024, 33(2): 026101.
[9] Optimized numerical density functional theory calculation of rotationally symmetric jellium model systems
Guangdi Zhang(张广迪), Li Mao(毛力), and Hongxing Xu(徐红星). Chin. Phys. B, 2024, 33(10): 107101.
[10] Epitaxial growth of ultrathin gallium films on Cd(0001)
Zuo Li(李佐), Mingxia Shi(石明霞), Gang Yao(姚钢), Minlong Tao(陶敏龙), and Junzhong Wang(王俊忠). Chin. Phys. B, 2024, 33(1): 018101.
[11] Physical mechanism of oxygen diffusion in the formation of Ga2O3 Ohmic contacts
Su-Yu Xu(徐宿雨), Miao Yu(于淼), Dong-Yang Yuan(袁东阳), Bo Peng(彭博), Lei Yuan(元磊), Yu-Ming Zhang(张玉明), and Ren-Xu Jia(贾仁需). Chin. Phys. B, 2024, 33(1): 017302.
[12] Two-dimensional dumbbell silicene as a promising anode material for (Li/Na/K)-ion batteries
Man Liu(刘曼), Zishuang Cheng(程子爽), Xiaoming Zhang(张小明), Yefeng Li(李叶枫), Lei Jin(靳蕾),Cong Liu(刘丛), Xuefang Dai(代学芳), Ying Liu(刘影), Xiaotian Wang(王啸天), and Guodong Liu(刘国栋). Chin. Phys. B, 2023, 32(9): 096303.
[13] Hydrogen evolution reaction between small-sized Zrn (n = 2–5) clusters and water based on density functional theory
Lei-Lei Tang(唐雷雷), Shun-Ping Shi(史顺平), Yong Song(宋永), Jia-Bao Hu(胡家宝), Kai Diao(刁凯), Jing Jiang(蒋静), Zhan-Jiang Duan(段湛江), and De-Liang Chen(陈德良). Chin. Phys. B, 2023, 32(6): 066106.
[14] Enhanced xylene sensing performance of hierarchical flower-like Co3O4 via In doping
Jing Zhang(张京), Jianyu Ling(凌剑宇), Kuikun Gu(谷魁坤), Georgiy G. Levchenko, and Xiao Liang(梁霄). Chin. Phys. B, 2023, 32(6): 068104.
[15] Predicting novel atomic structure of the lowest-energy FenP13-n (n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺) and Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
No Suggested Reading articles found!