Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 028504    DOI: 10.1088/1674-1056/22/2/028504
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Switching properties of bi-OPE-monothiol molecular junctions: Substituent effects and improvement of open-close ratio

Fu Xiao-Xiao (傅潇潇), Zhang Li-Xia (张丽霞), Li Zong-Liang (李宗良), Wang Chuan-Kui (王传奎)
College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Abstract  The electronic transport properties of a new kind of molecular switches -bi-OPE-monothiol molecular switches -were studied by applying first-principles calculations and generalized elastic scattering Green's function. The numerical results show that, for a bi-OPE-molecule junction, the offset face-to-face configuration induces more delocalized molecular orbitals, and results in higher conductivity than the parallel face-to-face configuration, so it can be used as a molecular switch. The side substituent groups containing more delocalized electrons can strengthen the intermolecular coupling and raise the conductivities of bi-OPE-monothiol molecular devices. On the basis of the investigations, we find a scheme to enhance the open-close ratios of bimolecular switches.
Keywords:  bimolecular junction      electronic transport properties      switching properties  
Received:  11 July 2012      Revised:  21 August 2012      Accepted manuscript online: 
PACS:  85.65.+h (Molecular electronic devices)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  31.15.xv (Molecular dynamics and other numerical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10804064 and 10974121) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2010AZ002).
Corresponding Authors:  Li Zong-Liang, Wang Chuan-Kui     E-mail:  lizongliang@sdnu.edu.cn; ckwang@sdnu.edu.cn

Cite this article: 

Fu Xiao-Xiao (傅潇潇), Zhang Li-Xia (张丽霞), Li Zong-Liang (李宗良), Wang Chuan-Kui (王传奎) Switching properties of bi-OPE-monothiol molecular junctions: Substituent effects and improvement of open-close ratio 2013 Chin. Phys. B 22 028504

[1] Aviram A and Ratner M A 1974 Chem. Phys. Lett. 29 277
[2] Reed M A, Zhou C, Muller C J, Burgin T P and Tour J M 1997 Science 278 252
[3] Cui X D, Primak A, Zarate X, Tomfohr J, Sankey O F, Moore A L, Moore T A, Gust D, Harris G and Lindsay S M 2001 Science 294 571
[4] Xu B and Tao N J 2003 Science 301 1221
[5] Schneebeli S T, Kamenetska M, Cheng Z, Skouta R, Friesner R A, Venkataraman L and Breslow R 2011 J. Am. Chem. Soc. 133 2136
[6] Franco I, Solomon G C, Schatz G C and Ratner M A 2011 J. Am. Chem. Soc. 133 15714
[7] Xu Y, Fang C, Cui B, Ji G, Zhai Y and Liu D 2011 Appl. Phys. Lett. 99 043304
[8] Fan Z Q and Chen K Q 2010 Appl. Phys. Lett. 96 053509
[9] Deng X Q, Zhou J C, Zhang Z H, Tang G P and Qiu M 2009 Appl. Phys. Lett. 95 103113
[10] Liu W, Cheng J, Yan C X, Li H H, Wang Y J and Liu D S 2011 Chin. Phys. B 20 107302
[11] Li Z L, Li H Z, Ma Y, Zhang G P and Wang C K 2010 Chin. Phys. B 19 067305
[12] An Y P, Yang C L, Wang M S and Wang D H 2010 Acta Phys. Sin. 59 2010 (in Chinese)
[13] Wu S, González M T, Huber R, Grunder S, Mayor M, Schönenberger C and Calame M 2008 Nat. Nanotechnol. 3 569
[14] Hirose T, Ie Y and Aso Y 2011 Chem. Lett. 40 204
[15] Pontes R B, Rocha A R, Sanvito S, Fazzio A and Silva A J R D 2011 ACS Nano. 5 795
[16] He J, Chen K Q and Sun C Q 2012 AIP Advances 2 012137
[17] Fan Z Q, Chen K Q, Wan Q and Zhang Y 2010 J. Appl. Phys. 107 113713
[18] Yi Y, Zhu L and Brédas J L 2012 J. Phys. Chem. C 116 5215
[19] Kilian L, Hauschild A, Temirov R, Soubatch S, Schöll A, Bendounan A, Reinert F, Lee T L, Tautz F S, Sokolowski M and Umbach E 2008 Phys. Rev. Lett. 100 136103
[20] Li X F, Chen K Q, Wang L, Long M Q, Zou B S and Shuai Z 2007 Appl. Phys. Lett. 91 133511
[21] Lin L L, Leng J C, Song X N, Li Z L, Luo Y and Wang C K 2009 J. Phys. Chem. C 113 14474
[22] Lin L L, Song X N, Luo Y and Wang C K 2010 J. Phys: Condens. Matter. 22 325102
[23] Martín S, Grace I, Bryce M R, Wang C, Jitchati R, Batsanov A S, Higgins S J, Lambert C J and Nichols R J 2010 J. Am. Chem. Soc. 132 9157
[24] Arnstein S A and Sherrill C D 2008 Phys. Chem. Chem. Phys. 10 2646
[25] Sinnokrot M O and Sherrill C D 2003 J. Phys. Chem. A 107 8377
[26] Watt M, Hardebeck L K E, Kirkpatrick C C and Lewis M 2011 J. Am. Chem. Soc. 133 3854
[27] Frisch M J, Trucks G W and Schlegel H B et al. 2004 Gaussian 03 Revision C.02, Gaussian Inc. Wallingford CT
[28] Mujica V, Kemp M and Ratner M A 1994 J. Chem. Phys. 101 6849
[29] Li Z L, Zou B, Wang C K and Luo Y 2006 Phys. Rev. B 73 075326
[30] Jiang J, Kula M and Luo Y 2006 J. Chem. Phys. 124 034708
[31] Li Z L, Zhang G P and Wang C K 2011 J. Phys. Chem. C 115 15586
[32] Jiang J, Wang C K and Luo Y 2006 QCME-V1.1 (Quantum Chemistry for Molecular Electronics) Royal Institute of Technology Sweden
[33] Mignon P, Loverix S, Steyaert J and Geerlings P 2005 Nucleic. Acids. Res. 33 1779
[34] Sinnokrot M O and Sherrill C D 2004 J. Phys. Chem. A 108 10200
[35] Gung B W and Amicangelo J C 2006 J. Org. Chem. 71 9261
[36] Rashkin M J and Waters M L 2002 J. Am. Chem. Soc. 124 1860
[37] Sherrill C D, Takatani T and Hohenstein E G 2009 J. Phys. Chem. A 113 10146
[38] Wheeler S E and Houk K N 2008 J. Am. Chem. Soc. 130 10854
[1] Measurement accuracy analysis of the free carrier absorption determination of the electronic transport properties of silicon wafers
Zhang Xi-Ren(张希仁), Gao Chun-Ming(高椿明), Zhou Ying(周鹰), and Wang Zhan-Ping(王占平). Chin. Phys. B, 2011, 20(6): 068105.
[2] Hydration effect on the electronic transport properties of oligomeric phenylene ethynylene molecular junctions
Li Zong-Liang(李宗良), Li Huai-Zhi(李怀志), Ma Yong (马勇), Zhang Guang-Ping(张广平), and Wang Chuan-Kui(王传奎). Chin. Phys. B, 2010, 19(6): 067305.
[3] Electronic transport properties of metallic single-walled carbon nanotubes
Cao Jue-Xian (曹觉先), Yan Xiao-Hong (颜晓红), Xiao Yang (肖杨), Ding Jian-Wen (丁建文). Chin. Phys. B, 2003, 12(12): 1440-1444.
No Suggested Reading articles found!