INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Switching properties of bi-OPE-monothiol molecular junctions: Substituent effects and improvement of open-close ratio |
Fu Xiao-Xiao (傅潇潇), Zhang Li-Xia (张丽霞), Li Zong-Liang (李宗良), Wang Chuan-Kui (王传奎) |
College of Physics and Electronics, Shandong Normal University, Jinan 250014, China |
|
|
Abstract The electronic transport properties of a new kind of molecular switches -bi-OPE-monothiol molecular switches -were studied by applying first-principles calculations and generalized elastic scattering Green's function. The numerical results show that, for a bi-OPE-molecule junction, the offset face-to-face configuration induces more delocalized molecular orbitals, and results in higher conductivity than the parallel face-to-face configuration, so it can be used as a molecular switch. The side substituent groups containing more delocalized electrons can strengthen the intermolecular coupling and raise the conductivities of bi-OPE-monothiol molecular devices. On the basis of the investigations, we find a scheme to enhance the open-close ratios of bimolecular switches.
|
Received: 11 July 2012
Revised: 21 August 2012
Accepted manuscript online:
|
PACS:
|
85.65.+h
|
(Molecular electronic devices)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
31.15.xv
|
(Molecular dynamics and other numerical methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10804064 and 10974121) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2010AZ002). |
Corresponding Authors:
Li Zong-Liang, Wang Chuan-Kui
E-mail: lizongliang@sdnu.edu.cn; ckwang@sdnu.edu.cn
|
Cite this article:
Fu Xiao-Xiao (傅潇潇), Zhang Li-Xia (张丽霞), Li Zong-Liang (李宗良), Wang Chuan-Kui (王传奎) Switching properties of bi-OPE-monothiol molecular junctions: Substituent effects and improvement of open-close ratio 2013 Chin. Phys. B 22 028504
|
[1] |
Aviram A and Ratner M A 1974 Chem. Phys. Lett. 29 277
|
[2] |
Reed M A, Zhou C, Muller C J, Burgin T P and Tour J M 1997 Science 278 252
|
[3] |
Cui X D, Primak A, Zarate X, Tomfohr J, Sankey O F, Moore A L, Moore T A, Gust D, Harris G and Lindsay S M 2001 Science 294 571
|
[4] |
Xu B and Tao N J 2003 Science 301 1221
|
[5] |
Schneebeli S T, Kamenetska M, Cheng Z, Skouta R, Friesner R A, Venkataraman L and Breslow R 2011 J. Am. Chem. Soc. 133 2136
|
[6] |
Franco I, Solomon G C, Schatz G C and Ratner M A 2011 J. Am. Chem. Soc. 133 15714
|
[7] |
Xu Y, Fang C, Cui B, Ji G, Zhai Y and Liu D 2011 Appl. Phys. Lett. 99 043304
|
[8] |
Fan Z Q and Chen K Q 2010 Appl. Phys. Lett. 96 053509
|
[9] |
Deng X Q, Zhou J C, Zhang Z H, Tang G P and Qiu M 2009 Appl. Phys. Lett. 95 103113
|
[10] |
Liu W, Cheng J, Yan C X, Li H H, Wang Y J and Liu D S 2011 Chin. Phys. B 20 107302
|
[11] |
Li Z L, Li H Z, Ma Y, Zhang G P and Wang C K 2010 Chin. Phys. B 19 067305
|
[12] |
An Y P, Yang C L, Wang M S and Wang D H 2010 Acta Phys. Sin. 59 2010 (in Chinese)
|
[13] |
Wu S, González M T, Huber R, Grunder S, Mayor M, Schönenberger C and Calame M 2008 Nat. Nanotechnol. 3 569
|
[14] |
Hirose T, Ie Y and Aso Y 2011 Chem. Lett. 40 204
|
[15] |
Pontes R B, Rocha A R, Sanvito S, Fazzio A and Silva A J R D 2011 ACS Nano. 5 795
|
[16] |
He J, Chen K Q and Sun C Q 2012 AIP Advances 2 012137
|
[17] |
Fan Z Q, Chen K Q, Wan Q and Zhang Y 2010 J. Appl. Phys. 107 113713
|
[18] |
Yi Y, Zhu L and Brédas J L 2012 J. Phys. Chem. C 116 5215
|
[19] |
Kilian L, Hauschild A, Temirov R, Soubatch S, Schöll A, Bendounan A, Reinert F, Lee T L, Tautz F S, Sokolowski M and Umbach E 2008 Phys. Rev. Lett. 100 136103
|
[20] |
Li X F, Chen K Q, Wang L, Long M Q, Zou B S and Shuai Z 2007 Appl. Phys. Lett. 91 133511
|
[21] |
Lin L L, Leng J C, Song X N, Li Z L, Luo Y and Wang C K 2009 J. Phys. Chem. C 113 14474
|
[22] |
Lin L L, Song X N, Luo Y and Wang C K 2010 J. Phys: Condens. Matter. 22 325102
|
[23] |
Martín S, Grace I, Bryce M R, Wang C, Jitchati R, Batsanov A S, Higgins S J, Lambert C J and Nichols R J 2010 J. Am. Chem. Soc. 132 9157
|
[24] |
Arnstein S A and Sherrill C D 2008 Phys. Chem. Chem. Phys. 10 2646
|
[25] |
Sinnokrot M O and Sherrill C D 2003 J. Phys. Chem. A 107 8377
|
[26] |
Watt M, Hardebeck L K E, Kirkpatrick C C and Lewis M 2011 J. Am. Chem. Soc. 133 3854
|
[27] |
Frisch M J, Trucks G W and Schlegel H B et al. 2004 Gaussian 03 Revision C.02, Gaussian Inc. Wallingford CT
|
[28] |
Mujica V, Kemp M and Ratner M A 1994 J. Chem. Phys. 101 6849
|
[29] |
Li Z L, Zou B, Wang C K and Luo Y 2006 Phys. Rev. B 73 075326
|
[30] |
Jiang J, Kula M and Luo Y 2006 J. Chem. Phys. 124 034708
|
[31] |
Li Z L, Zhang G P and Wang C K 2011 J. Phys. Chem. C 115 15586
|
[32] |
Jiang J, Wang C K and Luo Y 2006 QCME-V1.1 (Quantum Chemistry for Molecular Electronics) Royal Institute of Technology Sweden
|
[33] |
Mignon P, Loverix S, Steyaert J and Geerlings P 2005 Nucleic. Acids. Res. 33 1779
|
[34] |
Sinnokrot M O and Sherrill C D 2004 J. Phys. Chem. A 108 10200
|
[35] |
Gung B W and Amicangelo J C 2006 J. Org. Chem. 71 9261
|
[36] |
Rashkin M J and Waters M L 2002 J. Am. Chem. Soc. 124 1860
|
[37] |
Sherrill C D, Takatani T and Hohenstein E G 2009 J. Phys. Chem. A 113 10146
|
[38] |
Wheeler S E and Houk K N 2008 J. Am. Chem. Soc. 130 10854
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|